

Follow the instructions in Chapter 1

then write your Easy AMOS Registration

Number in this box I-I __ ! _________ --'

when it appears on your screen. Thank you.

DO NOT ATIEMPT
TO BACK UP YOUR
EASY AMOS MASTER
DISCS!

READ CHAPTER 1
FIRST.

F-

fk (~ IL
It ~ l....::J

by

Franyois Lionet

© Europress Software Ltd. 1992

Software design and programming

Manuals design and author

Manual layout and typesetting

Manual illustrations

Fran90is lionet

Mel Croucher

Kate Cameron-Daum

Robin Evans

W

No material may be reproduced in whole or part without written permission from
Europress Software. While every care has been taken to ensure this product is correct,
the Publishers will not be held legally responsible for any errors or omissions in the
Manual or software.

ISBN# 9 7818 720 84527

eurOPRESS
": __ g ____ r,_:t: __ ~ __ I\, __ I{ ___ "

Europress Software,
Europa House,
Adlington Park,

Macclesfield,
Cheshire, SK10 4NP.

'AlIo! 'AlIo! Reading this book and using this software can change
your life, like computers changed mine! Before computers, I was
learning the life of a vet, how to inject vaccine and clean cow's foot.
Then I did a big mistake, I bought me some old fashion computer. It
was fantastic. My programming passion grew. By the time I
graduate, I did not practice as vet at all! And here I am, comfortably
sat with my keyboard, writing an intro for Easy AMOS!

So, I warn you, my friend, you may discover a passion for
programming lying inside you, and this passion has a lot more
chance to grow with a computer like Amiga and a program like Easy
AMOS. What you have in your hand is the result of ten years
learning. Ten years spent with ugly technical manuals, ugly tools,
ugly syntax, ugly programming. But now I have put in this product
all I wish I had before. With Easy AMOS, I expect you to become a
programmer in a few weeks. Truly. Easy AMOS is more than a
learning tool. It is a full language with 350 commands, full help
features, examples, programs, musics, graphiCS, datas. We have
crammed in your discs hundreds of hours of entertainment.

So stop reading all this intro. Easy AMOS is your entry ticket to the
private club of programmers. Hope to seeyournameina commercial
game very soon.

Fran<;ois Uonet
Easy AMOS programmer

This Guide Book is the one I needed when I began programming,
back in 1966. I could have let Easy AMOS lead me by the hand for
a bitofinstantsatisfaction. I could have flicked through the Glossary
and begun to understand what all the jargon meant. But in those
days computer manuals were less friendly than rat poison and not
as effective. If you think I've devoted too much space in this book
on the needs of absolute beginners and indulging in cartoons, you're
probably right. Enjoy it anyway, because I reckon Easy AMOS is a
wonderful system. If only it had been around when I was you.,

Mel Croucher
Easy AMOS book author

iii

iv

I cut my computing teeth in 1982 at the age of 22, on an Atari 400.
There was very little entertainment software then, so I spent a lot of
time trying to program. The manuals and books I bought weren't
very good, but I kept atit and found programming an absolute thrill.
I got a genuine kick out of writing games and practical programs
over the following year or two, and my hobby introduced me to
many new friends.

The Easy AMOS team members have brought together their
combined experiences to produce the ideal package which would
have excited, stimulated and encouraged them to learn to program.
I am sure you will get a lot out of Easy AMOS. You will have a lot
of fun and feel a tremendous sense of achievement as you work your
way through this manual. Take it at your own pace and I can
guarantee that you will amaze yourself! Happy programming.

ChriS Payne.
Managing Director. Europress Software

I spent most of my teens learning to program on an antique 48K
Atari-400. Countless hours were spent trying to harness my
computer's power, but only short snippets from magazines and
highly technical manuals were available to me. Perseverance paid
off, and after years of studying and lots of head scratching I managed
to master the beast. This taught me a great deal, but it would have
been a much easier journey if a detailed manual had been available
to explain everything. So knowing how difficult it can be to learn
such concepts, please believe me when I tell you you've got it easy!
The Amiga 500 may be the most powerful home computer to date,
but all the hassle of controlling it is handled by Easy AMOS.

Take your time over learning Easy AMOS. Some concepts will take
longer to understand than others, but eventually all the pieces will
fit into place and you will become a competent programmer. Who
knows, you may be the next Fran<;ois for Europress!

Richard Vanner

Projects Manager. Europress SOftware

Before testing Easy AMOS, I had only ever used my Amiga for playing games.
I was a total beginner when it came to programming and an ideal candidate
to be a guinea pig. I was told that the package would live up to its name and
be easy. Not only was it easy and completely painless, it was also FUN! If I
can understand Easy AMOS I'm sure that anyone can! As I was testing the
Chapters out of order I tried to make sure that each stood on its own, but if you
do find yourself struggling over a particular Chapter don't worry, you can
always go on to other Chapters and come back to it later. Whatever you do,
make sure you try the "Sound" Chapter: it was amazing when I found out that
my computer could talk to me! And even more amazing when I reached the
end. I felt I understood how to program! There can never have been an easier
way to learn. I hope you enjoy using Easy AMOS as much as I enjoyed testing
it.

Ian McFegan
:ompany Accountant, Europress Software

"Contents are rich, and rich
enough."

(William Shakespeare, 1604)

v

Contents Contents

1: INTRODUCTION 1 6: TEXT 79
hello 2 the character set 80
computer programs 3 using text 83
care of discs 3 text coordinates 84
how to install Easy AMOS 4 moving text 85
let's go! 14 the text cursor 87
your first program 16 text style 90

fonts 91
2: FIRST STEPS 19
keywords 23 7: WORKING WITH THE
saving a program 26 KEYBOARD 95
deleting a program 27 moving the text cursor 96
loading a program 29 setting tabs 97
the file selector 30 checking for a keypress 97
the edit screen 32 the Easy AMOS Typing Tutor 100
direct mode 34 keyboard short-cuts 101

3: UP AND RUNNING 37 8: GRAPHICS 103
the Easy AMOS Help System 38 graphic coordinates 104
separating commands 40 drawing lines 105
Rem statements 41 drawing shapes 108
the Default Menu 42 colour 110
the System Menu 42 filled shapes 114
the Search Menu 42 flashing 120
the Blocks Menu 44 rainbows 121

graphical text 125
4: THE BARE BONES 47
strings 48 9: BOBS 127
variables 49 the main menu 131
arrays 53 disc operations 135
functions 54 bank operations 137

the grabber 139
5: LOGIC 59 hot spots 141
labels 60 palette colours 142
loops 66 screen resolutions 144
conditional loops 67 animation 145
numbered loops 68 drawing tools 148
steps 69 using Bobs 153
subroutines 69
conditional jumps 71 10: UNDERSTANDING
procedures 72 SCREENS 167
nesting 77 the default screen 169

defining screens 169
IFF screens 171

vi

Contents Contents
hiding and showing screens 173 16: PERIPHERALS, DRIVES
screen priority 173 AND DISCS 265 moving screens 175 joysticks 266 converting coordinates 178 the mouse 267

printers 271 11: USING SCREENS 181 disc drives 272 switching screens 182 listing fi1es 273 copying screens 185 selecting and naming files 279 scr<..>en colours 188 running programs from disc 280 fade effects 189 the Easy AMOS Disc Editor 283 zooming 192
screen zones 192 17: MEMORY 293 screen blocks 195 addresses 295 compacting screen memory 197 available memory 295 EHBmode 200 allocating memory 296 HAM mode 200 saving memory 298

memory hanks 298 12: SOUND 203 machine code 302 sound effects 204
synthetic speech 205 18: DEBUGGING ERRORS 309 music 207 bugs 310 samples 214 spotting mistakes 310 the Sample Bank Maker 219 help 310 waveforms 223 trapping errors 311
13:MATHS 229

error messages 315
arithmetic 230 19: THE EASY AMOS TUTOR 327 floating point numbers 234 the graduation challenge 328 trigonometry 235 calling the tutor 329 random numbers 238 the tutor screen 330

the control keypad 331 14: CREATING A GAME 239 how the tutor works 332 single-player game 240 evaluating expressions 336 onc or two-player game 244
title sequences 249 20: GLOSSARY 339 hi-score routines 249 keywords and jargon 340 the Easy AMOS ChaIJenge 250 direct mode editor keys 404

editor control keys 405 15: HANDUNG DATA 251 main menu options 408 using data 252
sequential files 254 INDEX 413 random access files 257
designing a database 260

vii

Chapter 1

INTRODUCTION

o hello

o computer programs

o care of discs

o how to install Easy AMOS

o let's go!

o your first program

"The words of Amos;
proclaim free-will
and publish!"

(Old Testament,
Amos 4.5)

1

Chapter 1

HELLO

=,r;;=

o
2

INTRODUCTION

Hello. By the time you finish this book, you will have
become an accomplished computer programmer. In
fact, before you finish this Chapter you'll be a
programmer of some sort! You are going to make your
Amiga obey all of your desires and fancies and perform
incredible tasks. You are going to create original
entertainment and produce useful programs. And best
of all, we reckon that you'll enjoy it.

To tell the truth, computer programming is dead easy,
but the Amiga has never been the friendliest machine to
control. Programming the Amiga used to be plagued by
mysterious processes and boring routines, but then
something wonderful happened in the world of Amiga
programming. We named it AMOS.

AMOS has already been used by tens of thousands of
experts and beginners to create superb programs, and
one day you may want to explore its wonders too. But
now something even better has happened. Easy AMOS!

Easy AMOS is a special version of its big brother AMOS.
It doesn't matter if you know a bit about programming
already, and it doesn't matter if you are an absolute
beginner. The only limit to what you can create with
Easy AMOS is your own imagination, because Easy
AMOS saves you the time and trouble of having to use
out of date ways of programming. The hard work has
already been done for you, and Easy AMOS is packed
full of expert ideas and brilliant routines all ready to use,
either by typing in simple instructions on your keyboard
orby selecting from choices on your screen. So get ready
for this step-by-step guide to the easiest and most
enjoyable way of programming that your Amiga has
been longing for.

PLEASE READ THIS CHAPTER BEFORE USING
YOUR EASY AMOS DISCS. It will only take a few
minutes, and you'll be glad you took this advice.

Chapter 1

Computer
programs.

Care of discs.

The drive light

INTRODUCTION

A compu ter program is simply a collection of instructions
telling a computer to perform a list of tasks. Programs
used to be stored on punched cards, which worked very
slowly and couldn't bechanged after use. Then magnetic
tape came along, which was still slow, but at least it was
cheap and you could record over it. Moderncomputers,
like your Amiga, use magnetic discs housed in thin
wafers of plastic. These are fast, reliable and tough, and
they can hold more programs than a mile of tape or a
cartload of punched cards. But there are still a few
hazards to watch out for.

Because disc programs are stored magnetically, you
must keep them clear of any magnetic objects, like
loudspeakers, television sets and microwave ovens.
Leaving plastic discs exposed to sun and heat at home or
in the back window of a car can warp them beyond use.
Contact with sticky fingers, spilled liquids or puppy
hairs is not a good idea either. Apart from physical
damagetoa disc, you can loose whole chunks of work by
doing something silly like eraSing a program by mistake,
or suffering a power cut. So for all these reasons, we
want you to take the information and examples that
makeup Easy AMOS, and make a copy foryourpersonaI
use. Then the original Easy AMOS discs can be put a way
somewhere safe without any risk of accidental damage.

In the plastic casing of your Amiga keyboard are two
small light panels. The main one is marked "POWER", .
and it is illuminated all the time that the computer is
switched on. The other one is an information light
marked "DRIVE",and it lights up wheneveryourinternal
disc drive is in use. NEVER remove a disc when this
drive light is illuminated, or you may damage yourdisc!
'Hard drive" systems will have an extra drive light,
which is illuminated when data is saving or loading
from the hard disc.

3

Chapter 1

Easy AMOS
discs

Create your
discs now!

J...Y

FLOPPY
DRIVE USERS

4

INTRODUCTION

Everything you need to create brilliant programs is on
the two discs that come with this guide book. What's
more, they contain a load of instant examples ready for
you to learn from, adapt and use.

Before you go any further, we want you to do some
work! Make sure that your Amiga is connected up in the
usual way, and get ready to prepare all the Easy AMOS
information for your personal use.

Your Amiga comes with a built-in disc drive, where you
insert the program discs that communicate with the
machine. This drive is called the "internal drive" or "Disc
Floppy number 0". We can abbreviate this to '·DFO".

You may be lucky enough to have extra disc drives
plugged into your computer, and there can be one or
more "floppy" drives, which take exactly the same sort of
3.5-inch square discs as the built-in drive, or you may
have a "hard" drive as well, which has a permanent
large-memory disc inside. If you're a hard drive user,
and you prefer to install Easy AMOS straight onto that
drive, miss out the next section of this Chapter and skip
straight to the "HARD DRIVE USERS" heading.

How to install Easy AMOS using the Amiga's internal
floppy disc drive, "DFO"

The instructions you are about to be given are incredibly
simple. The stages of the installation process will appear
on your screen automatically, and all you have to do is
follow them step by step.

You will need three blank discs on which to make your
copy of Easy AMOS, so make sure you have them ready
now. If you really want to plan ahead, have an extra disc
ready to use for experimenting with your own programs.
You'll be writing home-grown programs sooner than
you think! That makes four blank discs in all.

Chapter 1

"Flops are part
of life's menu,
and lain' t missed
a course yet"
(Rosalind Russell,

1957)

INTRODUCTION

Take out the pair of discs in the Easy AMOS package,
labelled:

"Easy AMOS Master Disc 1" and

"Easy AMOS Master Disc 2".

There are also four labels ready to stick on your blank
discs, marked:

"Easy AMOS Programs"

"Easy AMOS Examples"

"Easy AMOS Tutorial"

"My Programs"

If your Amiga is switched on, make sure the drive light
is not illuminated and take out any disc that may be in
the drive. Switch off the computer and count to ten
slowly. This gives the computer time to clear out its
memory and forget any bad habits that might be lurking
there. Make sure that the "mouse" is plugged into its
socket at the back of the machine, and get to wo'rk.

Take the disc marked "Easy AMOS Master Disc 1" and
look at the small tab in its top right-hand comer. Slid'e
this tab downwards so that it covers the small square
hole. Your disc is now "write-enabled", and this will
allow you to make a special personalised copy of Easy
AMOSwithyourownnameappearingonyourtelevision
screen. Slide the disc into the internal floppy disc drive.
Switch on your Amiga, and after a few clicks and whirs
our Welcome Screen will appear on your TV screen
looking like this:

5

Chapter 1

6

INTRODUCTION

After ten seconds, or as soon as you press a mouse
button or a keyboard key, a new screen will appear
headed with these words:

Easy AMOS Work Disc Creator

Before proceeding, you need to select the

nationality of your Amiga's keyboard.

Did you know that the Amiga has all sorts of different
keyboard layouts, depending on the country where it is
marketed? Easy AMOS does, and now he wants to
know which nationality keyboard you are using, so he
can talk with the right accent! Slide your mouse around

Chapter 1

Your
Registration
Number

INTRODUCTION

a bit, and identify the mouse pointer as it moves across
the screen. Look at the selection of nationality panels on
this screen page, and use the mouse to click on the one
that suits your machine. For example, if you have an
English Amiga, click on the [English] panel.

Now Easy AMOS is satisfied with his accent, he'd like to
get to know you better and asks you to type in your
name. Two name boxes are provided on your screen,
one for your First name and one for your Surname. If
you have remembered to "write-enable" your Master
disc, type in your first name and press the large left
handed arrow key (the [Return] key), then do the same
for your surname. You have just "written" your name
onto the disc electronically, and after a few seconds the
next screen appears.

Your screen will now ask you to "write-protect" your
Master discs, so make sure that the plastic tabs in the
disc's top right-hand COrner are slid upwards so that you
can see through the small square hole. This makes sure
that you can't harm the information on your discs by
mistake.

When you're happy that everything is in order, move
the pointer over the [Ok] panel, and click a mouse
button.

Your own unique Registration Number will appear on
the screen, and we want you to copy this number onto
your Registration card, onto your three Easy AMOS
blank disc labels, and into the space provided at the front
of this book. Do it now! Please.

Click on [Ok] and you'll be taken to a screen with three
control panels, containing the words:

[Install on floppy)

[Install on hard drive]

[EXIT)

7

Chapter 1 INTRODUCTION

8

Move the mouse pointer over the panel that says
[INSTALL ON FLOPPY), and click one of the mouse
bu ttons. This kicks off the automa tic installation process
and changes to a new screen with a reminder that you'll
need three extra blank discs. When you've read the
introduction words and you are happy to continue,
move the mouse pointer over the little [Ok!] panel and
click a mouse button to progress to the next screen page.

You have probably realised by now that all the
instructions you need to install Easy AMOS are provided
on your TV screen, but keep reading anyway, just to
make sure.

Easy AMOS should now be on screen with an offer you
can't refuse, "Let me install your software."

Let
install

me
your

software!

Chapter 1

Making your
Easy AMOS
Programs disc

INTRODUCTION

Insert a blank disc, and click on the left mouse button. If
your disc is not blank you'll be asked to confirm with
another [Ok!], or click on [Abort) to select another disc.
This disc will now be "formatted", and given the name
"Easy_AMOS:".

From now on, simply follow the instructions as they
appear on your screen. There is an information line at
the bottom of the screen which reports on exactly what
wonders are being transferred onto your discs, and just
above that there is a black Knowledge Transfusion Bar.
As soon as Easy AMOS's knowledge begins to flow from
disc to disc, you can watch its progress as the bar
changes colours.

You'll be told when to remove the blank disc and insert
"Master Disc 1" into the drive. Your Amiga will now
automatically put Easy AMOS knowledge into its own
"memory", and when this has been done you are asked
to insert your newly formatted disc.

Now the screen will ask you to repeat the knowledge
transfer process from the Master Disc into the Amiga,
then onto your new disc. When the last section of the red
line turns to blue, you'll be greeted by a celebration
screen telling you that your new disc is now ready.

Remove your brand new disc copy, and stick the "Easy
AMOS Programs" label onto it. NOW WRITE PROTECf
IT! When you're happy, click on the [Ok!) panel again.

If you think you've made a mistake at any time during
this installation process, there's nothing to worry about.
At the bottom of the screen is a message saying that if
you press the [ESC) key, which is at the top left-hand
comer of your Amiga's keyboard, you can stop the
installation process and start all over again. OK? Good.
It's very unlikely that anything can go wrong if you
follow the instructions on the screen.

9

Chapter 1

Making your
Easy AMOS
Examples disc

Making your
Easy AMOS
Tutorial disc

Making a disc
for your own
programs

10

INTRODUCTION

Now that your first new disc is full of Easy AMOS
delights, put it to one side along with your Master Disc
l,so as nottomix them up with "Master Disc 2" and your
other blank discs.

AMOS should be back on screen, asking you to insert
your next blank disc for formatting, so do just that and
click the left mouse button. This disc will be given the
name ··Easy_EXAMPLES:". When prompted, insert
'"Master Disc2", followed by your second newlyformaUed
disc. You have to swapoverthesediscstwice more. The
screen will tell you when.

You'll soon be greeted with a message saying that your
Easy AMOS Examples disc is ready. Remove it from the
disc drive, WRITE PROTECT IT NOW, and stick on the
label printed "Easy AMOS Examples". Click on [Ok!] to
proceed.

One more transfer of knowledge to go! So follow the
instructions as they appear on the screen once again for
your remaining blank disc. When the bar has transformed
from black to red then to blue, the screen informs you
that your Easy AMOS Tutorial disc is ready. Removeit,
WRITE PROTECT IT and stick its label on.

Finally, one more click on the [Ok!] panel brings you to
your first big decision.

You'll be writing your own computer programs very
soon, and you can "save" them by storing them on disc.
We do not advise you to "save" programs on your three
new discs, but we DO advise you to format another
blank disc NOW, to use for storing home-grown
programs. Click on [Format] to do this, or choose [PASS]
if you decide to skip our advice!

If you choose to [Format], you'll be asked to type in a
name for your programs disc. We suggest that you call
it My _Programs,and then press [Return]. Insert a blank

Chapter 1

HARD DRIVE
USERS

"It is a hard
drive on a
twisted lane."
(V.l. Lenin, 1915)

INTRODUCTION

disc and then click on the left mouse button to format it.
Don't forget to stick on the ready-made "My Programs"
label as soon as you remove it from the disc drive. You
can format another disc after this if you like, by clicking
on [Yes) when the screen offers you the chance.

If you click on [No], you have a choice. If you want to
make another set of your three Easy AMOS discs as a
back-up in case of accidents, choose the [Create again)
box, which will take you back to the [INSTALL ON
FLOPPY) screen. If you can't wait to get on with the
show, slip your NEW "Easy AMOS Programs" disc into
the drive and refresh your Amiga' s electronic mind by
pressing the [Control) key on the left-hand side of your
keyboard, at the same time as pressing both of the two
special "Amiga" keys [A) either side of the long [Space
Bar). This "reboots" the machine, and automatically
loads up Easy AMOS. LoadingEasy AMOS from scratch
is explained later.

The next section is only for users who have hard drives.
Floppy drive users should now skip to the last part of
this Chapter, headed "Loading Easy AMOS".

How to install Easy AMOS onto hard drive, using the
Amiga's internal floppy disc drive, "DFO".

The instructions you are about to be given are incredibly
simple. Every stage of the installation process will
appear on your screen automatically, and all you have to
do is follow them step by step.

Take out the two discs in the Easy AMOS package
labelled:

"Easy AMOS Master Disc 1" and

"Easy AMOS Master Disc 2".

11

Chapter 1

o
12

INTRODUCTION

If your Amiga is switched on, take out any disc that may
already be in the internal drive, switch off the computer
for ten seconds to clear its memory of any bad habits.
Make sure that the mouse is plugged in, and get to work.

Boot the hard disc as usual. Insert "Easy AMOS Master
Disc 1"" into DfO, and double-click on the resulting disc
icon of Master Disc 1. Then double-click on the
"EasyInstall" icon.

Select the nationality of your keyboard. For example, if
you are using an English keyboard, click on [English].

Follow the prompts and enter your first and last name.
Your Easy AMOS registration number will be generated
automatically.

Now write-PROTECf the Master Disc and click on
[Ok!]. Copy your registration number onto your disc
labels, registration card, and into the space provided at
the beiginning of this book. Please. Trigger [Ok!] to
proceed.

Move the mouse pointer to the [INSTALL ON HARD
DRIVE] option, and click a mouse button. This kicks off
the automatic installation process.

You are presented with 12 option panels, each one
representing a different device name. Click on the
device name that you intend to use. For example, if you
want to install Easy AMOS on drive DhO, choose the
[DhO:] option.

From now on, simply follow thcon-screen instructions. It'sas
easy as that! You can select via a file selector or enter a specific
device name if you wish.

Once you have selected your hard drive destination, AMOS
appears saying 'lctmeinstaIl your software". Lethimhavehis
way with your system Once the data has been copied across
fromboth of your Master Discs, the screen will tell you about
ourautornaticassign feature. Oickon[Ok!] ifyouaresatisfied,
and then select [Exit].

Chapter 1

Loading Easy
AMOS from
the Workbench

Loading Easy
AMOS

Easy AMOS
AND YOU

INTRODUCTION

For those of you whoarefami1iarwiththe Amiga 'Workbench",
you may want to load Easy AMOSdircctly from that. When
Workbench is running, simply insert your "Easy AMOS
Programs" discandclickon theEasy AMOS icon with your left
mouse button. If you've installed Easy AMOSonto hard disc,
selecttheappropriateiamsuntil theEasy AMOS icon appears.
Of course, Workbench eats up memory that is much better
used for Easy AMOS programs!

More experienced users may choose to select Easy AMOS
from the eli, which uses "command lines" typed in from the
keyboard. In thiscase,enter the world ofEasy AMOS with the
following:

EASYAMOS

If you have made a copy of Easy AMOS onto your new disc
labelled "Easy AMOS Programs" disc, test-load it now by
following these steps:

- Switch off your Amiga for about ten S<.'COnds.

- Put your "Easy AMOS Programs" disc into DR).

- Switch on the computer.

- Easy AMOS will automatically load into memory.

You are now ready to follow our little AMOS character along
the programming path. like you, he is setting out free from
complicated notions, and like him, we hope you will end up
brimming wi th wisdom. You will meet AMOS throughout
this guide book, and he'll be making goestappearances in the
computer programs we have prepared for you to learn from
and enjoy.

Thank you for taking the time and trouble to read this
introduction and make your personal copies of Easy AMOS.
1betimehascometowriteyourfirstcomputerprogramusing
the system. So, if you're ready, let's go!

13

Chapter 1

LET'S GO!

Identification
screen

14

INTRODUCTION

Leave the romputer ronnected up in your usual way for
games or practical software. If you use a television set for
picturesandsound,that'sfine. Ifyouusearnonitorforvisuals
and a hi-fi system for audio, Easy AMOS will take full
advantage of your system.

Easy AMOS is ready to roll when you see this
identification screen:

By F.Llonel

Easy AMOS is probably the friendliest system you'll
ever come across, so you won't be at all surprised to be
welcomed with your own name after a few seconds,
before getting down to business!

Chapter 1 INTRODUCTION

To create a compu ter program with Easy AMOS, you are
given a working area called the EDIT SCREEN. Press a
mouse button or any key on your keyboard, to reveal it
now. Or simply do nothing but wait. It will appear
automatically.

The Edit screen There's a guided tour of the Edit Screen in Chapter2,but
you probably want to see some action straight away! So
instead of explaining what everything does, just identify
the bits that you need for making contact with Easy
AMOS immediately. At the top of the screen is an
assortment of control panels that are triggered using the
mouse. Below that is an Information Line where Easy
AMOS keeps you up to date with exactly what's going
on in your programming efforts. The main part of the
Edit Screen is the working area. This is the Edit Window
where you actually write your programs, and there is a
little flashing bar waiting to act as your Edit Cursor.

o o
Press the [A] key on your keyboard, and a little "a" will
appear in the Edit window. Now hold down one of the
[Shift] keys and press [A] again. There should be a
capital "A" next to the little "a" on screen. This [Shift] key
is used if you want to type in any capital letters or
symbols that are marked above numbers and punctuation
marks on your keyboard. So to type in a "$" symbol, you
~?uld press [Shift] and [4] together. Typeina "4" and a
$ now.

Now locate the big key with a turn-left arrow on it,
on the right-hand side of the main block of keys,
and press it once. This is the [Return] key, and it is
used to start a new line when you write your
programs, so now the little Edit cursor should be
waiting at the beginning of the next line.

15

Chapter 1 INTRODUCTION

Trying to communicate with Easy AMOS by typing
in "aA4$" is just about as daft as it sounds, so nOw
locate the [Delete] key marked by a left arrow,
which is just above the large [Return] key. Press it
as many times as you need to get rid of the characters
you've typed on the Edit Screen, until the cursor is
back home in the top-left corner of the Edit Window.

Next, locate the little cluster of four "cursor keys" J...!] that are marked with direction arrows, just to the
r;;::::;;~::::;7I-.=:;i'11 right of your main keyboard. When you play with

El rtl r::::;r these, the movement is duplicated by the flashing
j....i..(l--l. Edit cursor as it moves around the Edit Window,

and this is how you can move quickly if you want

16

to change any of the characters that will make up
your first Easy AMOS program.

So, if you're ready to begin, copy the following
lines of program EXACTLY as they appear into the
Edit Window. Don't worry if you make a mistake
because Easy AMOS is ready and able to help
Start typing now. Good luck.

Track Load "Easy_ Exarrples: Songs/mod. laugh" , 6

Load "Easy_ Exarrples : Bobs/Drink_ Bobs .Abj('

Flash Off

Input "Tell rre your narre ... "; NAME $

IT$~"Hello ."

Print IT$

Say IT$+NAME$+"."

IT$~"Let' shave SOfr€ fun with Easy AMOS."

Print IT$

Say IT$

Wait 100

Double Buffer

Get Bob Palette

Chapter 1 INTRODUCTION

Cls 0

Ink 2

Plot 0,100

Draw To 320,150

Paint 0,110

Ink 1

Circle 250,50,20

Paint 250,52

Track Play

Y~112

Do

S~50 : E~220 S~l: AN~2

Gosub MOVE

S~220 : ~50 S~-l AN~3

Gosub MOVE

Loop

MOVE:

&=0

For A~S to EStep ST

Bob 1,A,Y,AN

Wait Vbl

&=B+l

If &=6

Y~Y+ST

&=0

End If

Next A

Return

17

Chapter 1

~\
18

INTRODUCTION

If you think every character in that program is now
faithfully reproduced in the Edit window, move the
mouse pointer up to the centre of the top line of little
panels, and click on the one that says [Test] with your left
mouse button.

Easy AMOS reads through your work instantly, and can
spot any mistakes. If all is well, the magic words ''No
errors" have just appeared in the information line, but
the chances are you have put in the wrong character
somewhere, or left something out. This is where Easy
AMOS starts getting friendly, by displaying a little help
message in the information line, as well as moving the
flashing Edit cursor to the nearest point in your lines of
program where it knows the mistake is lurking. So put
any mistakes right until your [Test] delivers the ''No
errors' message. Please insert your "Easy AMOS
Examples" disc into the intemal drive.

Now get ready to see and hear the results of your first
effort. Move the mouse pointer to the box that says
[Run], and click the left mouse button. When your
Amiga asks you for your name, type it in and press the
[Retum) key. And if you can do this with your first
program, no wonder your Amiga thinks it will never be
the same again.

You've already realised that writing programs with
Easy AMOS is not only simple, it's fun. If some of those
lines in your program seemed to make sense as you were
typing them in, you are well on the way to being a
programmer! Easy AMOS is a very sensible and very
direct "language" that allows your Amiga to understand
anything and everything you want to make it do.

Now [Run] your masterpiece again. In fact [Run] it as
many times as you like. Just one more word before you
move on to the next Chapter. Congratulations!

Chapter 2

FIRST STEPS

o the Easy AMOS discs

o keywords

o saving a program

o deleting a program
o loading a program

o the file selector

o the edit screen

o direct mode

"A journey of a
thousand miles
must begin with
the first step."
(Mao Tse-lung, 1947)

19

Chapter 2

The Easy
AMOS discs

~ u
20

FIRST STEPS

Easy AMOS is an amazing package. You will use it to
write the sort of games and programs you have always
dreamed of. Hard drive users should now have all of
Easy AMOS stored on their system. For floppy disc
users, the three discs you have just crea ted are filled with
everything you need to allow you to become a superb
computer programmer. Here's how.

The "Easy AMOS Programs" disc

This disc holds your tool-kit for manipulating graphics,
text, music, sound effects and most important of all,
ideas!

The "Easy AMOS Examples" disc
Of course you want to see and hear examples of what
Easy AMOS can do, and the programs on this disc have
been specially designed for you to learn from and adapt,
as you progress through this guide book.

The "Easy AMOS Tutorial" disc

The Tutorial disc will help to teach you how to use Easy
AMOS in the most practical ways. There's even a Quiz
to check on your new knowledge.

This book is written for absolute beginners, but it will
also help more experienced programmers. To get the
best out of Easy AMOS, try to read through each Chapter
in order of appearance but don't worry if you get stuck
along the way, you can always skip through a Chapter
and move on at your own pace.

Chapter 2 FIRST STEPS

By following this guide book step-by-step you can take
full advantage of everything on offer. If there are any
words or ideas that you don't understand, or if you want
a quick reference guide, there is a Glossary at the end of
this book where you can find explanations of keywords,
technical tenns and jargon. There's also a list of what
tricks and short-cuts the keys on your keyboard can
perform using Easy AMOS.

To make things as clear as possible in these pages, when
we rcferto a key on your computer keyboard, it appears
like this [Aj.

In the same way, the little option boxes that you can
select on your screen by using the mouse pointer arealso
given square brackets to separate them from the rest of
the text. For example: [Testj

Try out all the examples as they appear, and have as
much fun as you can while learning. Lines of computer
program that can be typed in, tested and run are shown
like this:

!(if' Print" Hello"

When you see the !(if' symbol, you will know that the
example that follows it can be typed in to your Edit
Screen, and the result will appear on your screen when
the example is [Runj. Feel free to experiment and change
these examples to see what happens. You can't harm
your computer by changing Easy AMOS examples!

21

Chapter 2

22

FIRST STEPS

Now that's clear, let's get programming! Load Easy
AMOS as explained in the last Chapter, or if you've
already been experimenting and the machine is still
switched on, leave your "Easy AMOS Programs" disc in
the computer and reboot the machine by pressing the
[Control] key at the same time as both of the [Amiga)
keys. AMOS will soon appear to greet you.

Click a mouse button or press a key to display the Edit
Screen, which looks like this:

~
~~

Chapter 2

Keywords

FIRST STEPS

If you copied the example at the end of the last Chapter,
you will already have written your first program. This
next one should be easy in comparison. Type in the
following line exactly as it is printed below, and leave it
at the top-left comer of the Edit Window. Don't press
[Return] yet:

(Jji?' print" Hello"

Easy AMOS programs use all sorts of instructions to tell
the Amiga what to do. Many of these instructions take
the form of special "keywords", and Easy AMOS
recognises them instantly. Now press the [Return] key,
and look at that line you typed in. Easy AMOS has
already examined i tand spotted a keyword. The keyword
has been automatically given a capital letter and
separated from what follows it by a space, so your line
now looks like this:

Print "Hello"

Wherever possible, Easy AMOS will look at what you
type in, and try to make sense of it, even if ir s not typed
in perfectly. But if you use the wrong keyword or make
an error in the spelling, you will be informed that there
isa mistake. Now add another two lines to your program
and press the [Return] key after each line, so that it looks
like this:

(Jji?' Print "Hello"

Wait 50

Print "I am your program.

There are two keywords used there, and they have the
same sort of meaning as in normal English.

23

Chapter 2

"Thi?!f also serve
who only stand
and wait."

(Milton, 1655)

o
24

FIRST STEPS

PRINT

This is an instruction that tells the computer to print
some information on the screen. In this case the
information is a list of characters that make up words.
You have put the words inside inverted commas to tell
the computer what to print on screen.

WAIT

This keyword is a command that tells the computer to
stop the program and wait for as long as you want before
moving on to the next instruction. The number that
follows it is the number of 50ths of a second to wait, so
in your example the program will wait for one second.

Now move your mouse pointer up to the [Run] option
at thetopof the screen, and click on the left mouse button
to See the results of your work. As soon as you [Run]
your program, the blue Edit Screen disappears and a
new screen takes its place ready to display the current
program. In the case of your example, the word "Hello"
should appear on screen in the top left-hand corner, and
after a one second wait, "1 am your program" appears
below it.

When the program has been completed, Easy AMOS
gives you a report which is automatically displayed
outside of the working area, at the bottom of the screen.
There should be a flashing message telling you at which
line your program ended, and below that you are told
how to get back to the editing process. If all is well, the
following report is now sitting centrally at the bottom of
your screen:

End of program at line 3

[ESCAPE] to direct mode, [Space] to editor

Chapter 2

Editing

FIRST STEPS

To adapt or change your work, return to the Edit Screen
by pressing the [Spacebar]. Change the characters to be
printed and the value that controls the waiting time, and
[Run] your edited program. You can alter your program
to something like this:

fIj;? Print "Hello again!"

Wait 150

Print "I am your edited program.

That little program will now stay in your computer's
"memory" all the time that you leave it switched on, but
as soon as the power is turned off, the machine will
forget all about it and your work will disappear down
the electronic waste pipe. This is annoying, but not a
disaster if your program only took a minute to write and
another minute to edit. But supposing you write a
program that takes hours of work with hundreds of
instructions in it: the last thing you want to do is lose it.
To store programs on disc, they must first be "saved",
and then they can be "loaded" for later use.

Take the blank disc tha t you were asked to "format"" in the
lastChapter,and get ready to use it. !fyou have not yet
prepared a formatted disc for your own programming
examples, do it now and label the disc something like
"My Programs", to use for storing examples that you
want to keep for later. When you've done that, reboot
Easy AMOS, go to the Edit Screen and type in and [Run]
this program:

fIj;? Print "I am test number one"

After checking that your example works, return to the
Edit Screen, remove your "Easy AMOS Programs" disc
and insert the new disc that you've prepared for storing
your programs.

25

Chapter 2

Saving a
program

"Half our life
is spent wishing
we'd saved half
our life."

26

(Will Rogers,
1927)

FIRST STEPS

Saving an Easy AMOS program is very simple. Press an
[Amiga) key and the [S) key together, and a "File Selector"
automatically pops up on the screen looking like this:

I I
I IDfi~ I
1!]lmj]9 I

I ~ I

I ~O I
I ~9 I

The little flashing cursor at the bottom of the File Selector
panel is waiting for you to give a name to the program
you want to save, so type in this name and then press
[Return):

II:? Testl.AMOS

That's it! Your test program has been saved onto the
disc, and you have been delivered back to the Edit
Screen.

Chapter 2

Keyboard
short-cuts

Deleting a
program

FIRST STEPS

Make sure that the edit cursor is in your line of program
and press [Shift] and [Del] together. Your program has
just been wiped off the screen. This isa good illustration
of how Easy AMOS uses certain keys acting together to
produceshort-cutsinyourediting. Forexample,pressing
[Del] on its own will delete the character at the current
location of the edit cursor, but if you press [Shift]+[DeI]
together, the whole line in which the cursor is sittingwill
be erased. There is a long list of similar key presses that
provide editing short-cuts, and you can find them at the
end of the Glossary.

At the moment, there should be nothing in your Edit
Window except the edit cursor. Let's prove that your
program has gone by trying to [Run] it. Nothing? Good.
Now press [Spacebar] to return to the Edit Screen and
look at the information line below the panel of options.
At the right-hand side, the following report is given:

Edit: Testl.AMOS

This means tha t Easy AM OS is still expecting you to edit
the program you have just saved, named "Testl.AMOS".
But let's forget about this program for a while and write
another one.

Hold down the [Shift] key and look for a new option that
has appeared, called [New]. This option vaporises your
current program from the computer's memory
altogether, so it is very powerful! Trigger it by moving
the mouse pointer to [New], then press the left mouse
button. A message appears in the Information Line,
saying:

Please confirm (Yes or No)

27

Chapter 2

"~r--. _:;7

~4

(f1'
28

FIRST STEPS

This is provided to double-check the fact that you want
to get rid of your current program altogether, and waits
for you topresseither[Y]or[N]. Press [Y]. You may not
realise it yet, but you are using the Easy AMOS system
like an expert! Choices can be made straight off the
screen by triggering various options provided by
"menus", or by typing in instructions using the keyboard,
and you are already doing both.

The Information Line will ask if you want to save your
program, press [N] and it should now report that your
last program has gone, and that your next program has
yet to be given a name. Type this in:

IUr' Print "and I am test number two"

This time, don't run your new program by selecting the
[Run] option with your mouse, but press the [Fl) Key
instead. This "function" key has been preprogrammed
to run the current program, and you have just been
introduced to another range of Easy AMOS short-cuts,
which use the function keys at the top of your keyboard
to perform special tasks. We'll take a look at what all
these keys can do later on, and they are aIJ catalogued in
the Glossary.

If you are satisfied that your Test Number Two program
is all in order, get ready to save it, but DO NOT press
[Amiga)+[S). Instead, hold down the [Shift] key and
look at the top of the Edit Screen. A [Save] option has
appeared where the [Test) option normally sits. Use
your left mouse button to click on the [Save] option, and
the file selector pops up again. Now name this program:

IUr' Test2 . AMOS

and press [Return]

Chapter 2

Loading a
program

"Well, punk? Is
it loaded?"

(Clint Eastwood,
1971)

FIRST STEPS

This is your final introduction to the way Easy AMOS
allows you to carry out your wishes. Wherever possible
you can choose between using the mouse to trigger
options from the screen menus, or type in instructions
via the keyboard. You can also use the right mouse
button to act as a [Shift] key. It can be easier and faster
to operate like this.

Get rid of your current program with [New] followed by
[Y] to confirm your action.

Easy AMOS programs are loaded via the File Selector.
You can either press [Amiga]+[L] or call up the [Load]
option on the Edit Screen by holding down [Shift]. This
time, when the selector appears, type in the name of the
program you want to load then press [Return]. Try
loading your "Testl.AMOS" program, and it should
appear in the Edit Window. Now load in "Test2.AMOS".

There can be no problem in remembering the names of
one or two programs or "files" on a disc. But when you
have dozens of discs each holding several groups of
files, you cannot rely on your own memory to sort
through them.

Imagine you are running a radio station, and you have
a load of music tracks that you want to store for easy
reference. Several tracks can be held on an album, and
each album is held in a sleeve that gives details about the
tracks. You can keep your albums in separate boxes, and
you can put a label on each box. If you keep the system
up to date, you'll be able to play any track on any album
in any box you like, without having to rummage through
your whole record library.

29

Chapter 2

THE FILE
SELECTOR

Scrolling
through files

"Miss
Dalrymple,
kindly nail my
files. "

(Groucho
Marx,1938)

Folders

&l
30

FIRST STEPS

A computer "file" is just like a track of music. It is self
contained, it has its own name, but it can also be held in
a "folder" along with other files.

You are now going to learn how to search through and
select files, so let's use some ready-made examples.
Insert your "Easy AMOS Examples" disc and call up the
File Selector with [Load) or [Amiga)+[L). The main
window of the File Selector should now be filled with
the names of Easy AMOS examples.

When there are more file names on a disc than can be
fitted into the window display, you can use the vertical
bar on the right-hand side of the window to "scroll" up
and down through the list of files. Simply place the
mouse pointer in the bar and drag it in the direction you
choose, using the left mouse button. There are also four
small icons that show direction arrows, with "up" /
"down" at the top of the scroll bar, and "left" /"right"
below it. Use the mouse to move through the list of files
in any direction you want, by selecting an icon and
clicking the left mouse button.

Any names in the listing that begin with an asterisk, in
other words the' character, are the names of "folders".
These are like album sleeves that hold the titles of
several different tracks, or the equivalent of a cardboard
folder that contains various named documents. You can
open any of these folders and take a look at the names of
the files inside them by moving the mouse pointer over
the name of the folder, and clicking on the left mouse
button. It's a bit like examining a family tree, where the
name of the folder is the original "parent".

[ParentI

To come out of any folder, and get back to the main list
of files, simply click on this option with the left mouse
button. You also use the left mouse button to select the
following options.

Chapter 2 FIRST STEPS

[Discs)

Change the file list to a list of the available devices (such
as disc drives).

[Ok)

This confinns that the file you have highlighted is the
one to be selected for loading.

[QUIT)

Use this to leave the File Selector and jump straight back
to the Edit Screen.

[SORT)

Normally, filenames are displayed in the order they
have been saved onto the disc. This option will perform
an automatic A-to-Z sort through all thefileson the disc,
and display their names in alphabetical order.

DIRECTORIES If you get lost and want to check and see what files are
on a particular disc, there is a simple command you can
use directly from the Edit Screen.

DIR

This command tells Easy AMOS to display a "directory'·
on screen of all the files and folders that are currently
saved on a disc. Go to the Edit Screen now, and make
sure that your "Easy AMOS Programs" Disc is in the
internal disc drive DFO. Now [Run) this:

~ Dir "DfO:"

The disc's directory should now appear on your screen,
with each file name on a separate line, and all folders
marked with the "." character. Infonnation is also ~ven
in the form of numbers, that tell you how big each file is.
Full details about directories and the names of their
'paths" can be found in Chapter 16.

31

Chapter 2

THE EDIT
SCREEN
GUIDED
TOUR

32

FIRST STEPS

If your directory listing is still on screen, press [Spacebar]
and welcome back to the Edit Screen! The time has come
for you to enjoy everything it has to offer, so here is a
short guided tour around its amazing features.

Chapter 2

The Default
Menu

The Blocks
Menu

The System
Menu

The Search
Menu

The
Information
Line

"Long distance
information:
get my party
on the line."

(Chuck Berry,
1959)

FIRST STEPS

At the top of the screen, the Menu Window displays all
the commands that are cUlTently available. This is your
entry to the Easy AMOS editing features, and it's the
menu that always appears when you first enter the Edit
Screen. We call it the "Default Menu'. You have already
used some of the items on offer, and a full list of what's
available in all the editing menus appears at the end of
the Glossary in this book.

Hold down the [CtrI] key, and you will see that the
Default Menu has been replaced by a new set of options.
This is the Blocks Menu, and it provides everything you
need for manipulating blocks of computer program.

This is called up from the Default Menu by holding
down one of the [Shift) keys, and it contains a selection
of important commands for handling complete
programs.

When you hold down the [AIt) key, the Search Menu is
called up, and its various options are used to handle text.

This line is below the Menu option panels, and it's where
Easy AMOSgivesarunningreporton the editing process.
The report on the left-hand side of the Information Line
isa single letter that tells you what editing "mode" you're
using.

I means that new characters will be Inserted wherever
the edit cursor is on the screen. That's the normal state
of affairs. An 0 can also appear here. See below.

o means that new characters will Overwrite characters
that are already displayed in the Edit Window.

L: tells you which Line you are editing.

C: shows the number of the Column the edit cursor is in.

Text: Chip: Fast: report how much memory is
available for various tasks.

Edit: displays the name of the program that you are
editing.

33

Chapter 2

The Edit
Window

DIRECT
MODE

34

FIRST STEPS

You have already used the main Edit Window for short
home-grown programs that only use a few lines, but
most program listings will take up several screens or
"pages". If you remember how you scrolled through the
File Selector window, you will recognise exactly the
same facility here. The right-hand side of the Edit
Window features a vertical scroll bar, with a pair of Up/
Down options, and at the bottom of the screen is a
horiwntal scroll bar with Left/Right icons in the corner.
Use your mouse to scroll through program listings.

Get rid of anything that is in the Edit Window now by
deleting it or selecting the [New] option followed by [Y]
to confirm your action. If a program is still in your
computer's memory, you will be asked if you want to
save it. Press [N] to confirm that you don't want to save
any current programs.

Easy AMOS is designed to allow you to test out ideas
without interfering with your program listings in the
main Edit Window. While editing, you can press [Esc]
at any time, and jump to "Direct Mode". This provides
you with a special screen that appears at the bottom of
your display, and you can move it vertically with the
arrow keys on your keyboard. Press [Esc] now, and
move the blue panel up and down, then position it in the
lower half of your screen. Now give Easy AMOS a direct
command, like this:

n::Jr Print ~I am in Direct Mode! U

Try another one. For example:

~ Wait 250 : Print "A five second wait."

Chapter 2

"Editors separate
the wheat from
the chaff.
And then print
the chaff."

(Adlai
Stevenson, 1966)

FIRST STEPS

Function keys
When you enter Direct Mode, a list of special pre-set
"functions" is displayed in thebl ue panel. These functions
can be called up by various key-presses to perform
specific tasks, and full details of what they do can be
found in the Glossary. At the bottom of the blue panel
there is a "prompt" where your typed commands will be
displayed one after the other. Every time you press the
[Return] key to test out one line of direct commands, a
new prompt appears, and the list of functions moves up
one line in the panel's display.

Before we end this Chapter, here are three keywords
that you can use anywhere in your programs to jump
straight back to the editing process.

END

As soon as this command is recognised, it stops the
program, and you can either press [Esc] to go to Direct
Mode, or [Spacebar] to get to the Edit Screen. Try this
example:

~ Print "Easy AMOS"

End

Print "This line will be ignored."

EDIT

Similarly, this instruction tells your computer to leav!!
the current program and return you to the Edit Screen,
like this:

~ Print "Wait three seconds"

Wait 150

Edit

Print "I'm still waiting to be printed!"

35

Chapter 2

36

FIRST STEPS

DIRECT

Use this command to jump out of your programs when
you want to test an idea in Direct Mode. For example:

n? Print "Take me to Direct Mode"

Direct

In the next Chapter, you'll learn how to ask Easy AMOS
for help, and then take a closer look at the various
menus.

Chapter 3

UP AND RUNNING

o the Easy AMOS Help System

o separating commands

o Rem statements

o the Default Menu

o the System Menu

o the Search Menu

o the Blocks Menu

"All I do is
get the big
fireworks up
and running."

(Werner von Braun,
1958)

aa __

37

Chapter 3

"I hate friends
when they come
too late to help."

(Euripides, 455
BC)

The Easy
AMOS Help
System

dJ~ <J \

38

UP AND RUNNING

This is where you use Easy AMOS 'to take real control of
your Amiga. In this Chapter, you will write a simple
program and learn how to reorganise it to your liking.
Before beginning, treat yourself toa little friendly magic!

Easy AMOS provides you with hundreds of keywords,
and each one tells the computer to perform a specific
task. You can't be expected to learn them all straight
away, so they will be introduced in the most logical
order as you work your way through this book. It has
already been explained that you can check out anything
you don't understand in the Glossary, but Easy AMOS
is designed to help electronically too.

Display the Edit Screen, and if you are already editing a
program, get rid of it with [New] followed by a [Y] to
confirm. Now look at your Amiga'skeyboardand locate
the [Help] key. Press it, and the Easy AMOS Help
Window will appear, ready and willing to give you
advice!

At any moment,during editing, you can get information
about Easy AMOS keywords that are typed in the Edit
Window. To do so, just put the edit cursor on the FIRST
LETTER of the keyword you need help with, and press
[Help]. Easy AMOS will then try to find information
about this keyword, and display it in the Help Window.

There's a vertical scroll bar on the right-hand side of the
Help Window, and if the help information is too big to
fit in the window, simply click your left mouse button in
the scroll bar to drag the text into view. You can also
move the whole Help Window up and down your
screen, by clicking on its top border with the left mouse
button and dragging it vertically.

Chapter 3

•
UP AND RUNNING

You can either call for help about a keyword that is
already in the Edit Screen, or if you just want informa tion
about a word you're not sure about, type it inand trigger
the help system. You don't even have to type in the
whole word, because Easy AMOS will try to recognise it
from the first few characters. For example, you can get
information about the keyword "Print" by using the
system on any of the following characters:

Pr

Pri

Prin

Print

If the word you are looking for is NOT a genuine Easy
AMOS keyword, an apologetic message appears at the
topof the Help Window. For example, if you ask for help
with "Banana", the following report is given:

Help keyword: "BANANA"

Sorry, help not found!

To get back to the Edit Screen from the Help Window,
trigger the [Quitl option with your mouse, or press
[Return! or [Esc! or the [Help! key again. Try out the
Help System now with the keywords you already know.
We told you Easy AMOS was friendly!

Here's a new keyword you can ask Easy AMOS to [Help!
explain. It tells the program to wait until a single key is
pressed on the Amiga's keyboard before going on to the
next instruction.

39

Chapter 3

Separating
commands in a
line

40

UP AND RUNNING

WAIT KEY

Type in and [Run] the next example. Don't forget, you
can press [Fl] to run a program, instead of triggering the
[Run] option with your mouse. When the first line has
appeared, the program will wait for you to press a key
before printing the last line on screen.

!Iff" Print "Wait"

Wait Key

Print "Continue"

Now delete those three lines, and [Run] or [Fl] this:

II§=' Print HWaie : Wait Key : Print "Continue"

So far, you have separated individual instructions by
typing them in and then pressing [Return] to put them
on a new line of program. But it is perfectly acceptable
to give several commands in a single line. They MUST
be separated by a colon, just like that last example. As
you might expect, Easy AMOS provides short-cuts
wherever possible, and you don't have to worry about
typing in correct spacings, as long as you stick to the
rules. When you use a colon to split up your commands,
spacing is automatic, in the same way that keywords are
recognised and given a capital letter and a space. Type
this in, [Return] and [Run]/[Fl] to prove it:

(('1?" print"I'm so":waitkey:print"neat!U

Now you are a genuine programmer with at least a
couple of hours experience, here's a trick of the trade
that the experts use to prevent amnesia.

Chapter 3

Rem
statements

"R.E.M. man?
The best thing
ever!"

(Michael Stipe,
1989)

UP AND RUNNING

Imagine that your latest programming masterpiece is so
long, and so clever that you can't remember where
everything is and what anylhing is supposed to do!
What you need is a way to remind yourself what to
remember. This is where "Rem" statements come in.

REMor'
You can leave a little message anywhere you like in your
programs to jog your memory as to what that particular
chunk of program is designed to do. This is the last time
your intelligence will be insulted by telling you to [Run]/
[FI] a routine. From now on you are considered to be a
genuine Easy AMOS programmer, and you know how
to make an example work! Run this:

~ Rem This reminder is for rre not my Aroiga

Print "I am an Easy AMOS expert! II

When you begin a line with a Rem statement like that, it
is completely ignored as far as the Amiga is concerned,
but it can be a great help when you are scrolling through
your program and looking for reminders. If you put an
apostrophe character (') at the beginning of a line it acts
in exactly the same way as a "Rem", and that line is also
treated as a comment for your own use and not as a part
of your program. For example:

~ , This line is a comment

Print "Easy" : Wait 100 : p~int nAMOS"

A Rem statement can be placed at the end of a line if you
prefer, but you are ONLY allowed to use the apostrophe
for this purpose at the beginning of a line. So this
example is fine:

~ Print ~This example is fine" : Rem Fine

But this example will create an error:

~ Print "Whoops!" : ' I am illegal

41

Chapter 3

MENUS

The Default
Menu

The System
Menu

The Search
Menu

@
42

UP AND RUNNING

The various options that can be selected at the top of
your Edit Screen are just like the menus offered in a
restaurant. You make your choice from the list on offer,
and Easy AMOS serves it up!

You have already selected from the tasty dishes in the
"Default Menu" that appears when you enter the Editor,
by choosing options like [Run] and [Test].

You have also had a brieflook at what's on offer in the
"System Menu", by holding down a [Shift] key, and
selecting options like [New].

Let's take a closer look at the Search Menu next, and see
how it can be used to manipulate your program listings.

When editing your own programs, or adapting some of
the ready-made examples on your Easy AMOS discs,
you will want to be able to find particular charaders
such as keywords, numbers, Rem statements, and so on.
Once they have been found, you can change them. But
in a very long program listing, this could get very
tedious and there is no guarantee that you would spot
the characters you are looking for. Easy AMOS allows
you to spot characters you want to search for
automatically! Type in this example now.

~ Print "One man went to mow,"

Pri.nt "Went to mow a meadow."

Print ~One man lost his dog,"

Print "Went to mow a meadow."

Chapter 3

Finding a
string

UP AND RUNNING

Place the flashing "text cursor" back at the beginning of
the first line of that example on your Edit Screen, then
call up the "Search Menu". You cando thisbyc1ickingon
the [Search Menul option, or by holding down the [Altl
key. The top left-hand menu option should now say
[Findl. Trigger it with your left mouse button, and these
words will appear in the Information Line:

Enter string to search:

A "string" is simply a number of characters strung
together, and you are about go on an automatic search
for some characters in your last example. Type in the
following characters, then press [Returnl:

~mow

Easy AMOS will now makea search from the position of
the text cursor, forwards through your current program,
looking for the string of characters that make up "mow".
If the search is successful, the text cursor will jump to
that location in your listing.

Make sure you are still in the Search Menu and trigger
the [Find Nextl option. Your text cursor will jump
straight to the next location of the characters you are
trying to find. Try that again, to jump to the third
occurrence of the characters that make up "mow". If you
attempt a further search and there are no more instances
of this string of characters, a "Not Found" report will be
given. Now trigger the [Find Topl option to jump to the
highest location of your string in the program, and press
[Returnl.

43

Chapter 3

Replacing a
string

The Blocks
Menu

44

UP AND RUNNING

Once you've found a string, it's just as easy to replace it
with another one. Activate the [Findl option again,
delete the "mow' string in the Information Line, and
type in "lost" instead. Now hit [Returnl. This time,
activate the [Replace] option, and you will be prompted
with this line:

Enter string to replace with:

Type in the following replacement string, then press
[Returnl:

IIJ1> found

The "lost" string should now be replaced by "found"!

The full list of options on offer in the Search Menu can be
found at the end of the Glossary Chapter. But for the
time being, let's move on to the choke of options waiting
to be used in the "Blocks Menu".

Call up this menu by selecting it from the Default Menu,
or by holding down the fOrI] key. As with all the other
menus, you can look up how everything works in the
Glossary, when you've got the time. As for now, let's
have some fun.

With your text cursor at the first character on the top line
of your current program, select [Block Startl. It will
come as no surprise to learn that you've just marked the
beginning of a block of program, ready to be manipulated.
Now move the text cursor below the last line of the
current example, and click on [Block Endl. The program
block you have marked out should now be highlighted.
Areyou ready for a little more Easy AMOS magic? Select
the [Block Pastel option from the menu, and you will
paste a perfect copy of your program listing block into
the Edit Window. In fact, [Block Pastel it as many times
as you like!

Chapter 3

"The first cut
is the deepest."

(Rod Stewart,
1977)

UP AND RUNNING

Now mark the [Block Start) and [Block End) of a few
lines of your program, then [Block Cut) it tocutitoutand
make it disappear. Next, highlight another block, move
your cursor anywhere you fancy in the listing and [Block
Move) it! You can mark a block by using your right
mouse button for setting the start point (ill'the listing,
keeping it held down and dragging the chrsor through
the program lines. Release the right button to set the end
of your block.

Experiment with the Search Menu as well as the Blocks
Menu and have some fun. If you get as far as ninety-nine
men mowing meadows, it might be time to move on to
the next Chapter.

45

46

Chapter 4

THE BARE BONES

o strings

o variables

o arrays

o functions

"Nothin' but a
rag, a bone an'
a hank 0' hair."

(Amos and Andy,
1941)

47

Chapter 4

STRINGS
r

48

THE BARE BONES

This Chapter provides you with the bare bones that
support Easy AMOS programming. These bones are
used to build program skeletons, so you have to learn
what they do and how they work before you can add on
all the juicy chunks and hairy bits that give a program its
own look and feel.

Bones thatmakeupa skeleton have some rather peculiar
names, but you'll be pleased to learn that Easy AMOS
avoids difficult words and ideas wherever possible, so
let's start wi th oneof the simplest concepts in computing,
known as "strings".

A "string" is a number of characters aU strung together
like beads on a necklace. If a string of beads hasn't got
a clasp at either end, all the beads fall off, and the
necklace ceases to exist. In much the same way, we put
a set of quotes at either end of a string of characters, to
hold them together and separate them from the rest of
the program. We also like to identify each string we
create with its own name, not just to give it a sense of
belonging, but also so that we can call it up by name and
use it later on. We attach a "dollar" symbol $ on the end
of a string name, to mark the fact that the name refers to
a string.

Characters in a string can be letters, numbers, symbols,
or even spaces. Think up a simple string now by giving
it a name, followed by the special $ symbol which you
type by pressing the [Shift) and (4) keys together. Then
define it, by letting the name of the string equal the
characters enclosed in quotes. You type in the quote
marks by pressing the [Shift) and (2) keys together.
Here's an example:

W A$~"Easy AMOS"

Print A$

Chapter 4

VARIABLES

THE BARE BONES

Here's another, using three different strings:

~ A$="Easy"

B$=" "

C$="AMOS"

Print A$+B$+C$

Strings are very useful creations, and they can act on
their own or work together, like that last example. Run
this example just for fun:

IJ::§" A$="EASY AMOS" - "S"

Print A$

Easy AMOS allows you to play with strings in all sorts
of useful ways, and we'll come across them later on in
this Chapter. Before that, you need to understand one of
the most powerful sets of bones in the programming
skeleton. These are called "variables."

There are certain parts of a computer program that are
set aside to store the results of calculations. We call the
names of these storage locations "variables." If you can
think of a variable as the name of a place where a value
lives, and that the value can change as a result of a
calculation made by your computer, then you will begin
to see how useful they are. Like strings, variables are
given their own names too, and once a name has been
chosen it can be given a value, like this:

IJ::§" SCORE=100

Print SCORE

Thatexamplecreatesa variable with the name of SCORE,
and loads it with a value of 100.

49

Chapter 4

Naming
variables

50

THE BARE BONES

The rules for naming your variables are very easy to
follow. Firstly, all variable names must begin with a
letter, so you can name a variable like this:

AMOS2~1

but the following name is not allowed:

2AMOS~1

Secondly, you can't begin a variable name with the
letters that make up one of the Easy AMOS "keyword"
instructions, because this would confuse your Amiga.
So although the followingname would be al right,because
the first letters don't make a keyword:

FOOTPRINT~l

this one is not acceptable, because the computer
recognises the first five letters as the keyword PRINT:

PRINTFOOT~l

Try typing in those last two examples, then press the
[Return) key. In fact, Easy AMOS has spotted the illegal
name for you, and pointed out the mistake by splitting
the keyword away from the rest of the name.

The next naming rule is very easy. Variable names can
be as short as one character and as long as255 characters,
buttheycannevercontainablankspace. So the following
name is fine:

EASYPEASY~l

But this is an illegal variable name:

EASY PEASY~l

Chapter 4

Types of
variables

THE BARE BONES

If you want to split your names up, use the "underscore"
character instead of spaces, by pressing the [Shift] and
[-I keys together, for example:

I AM A LONG LEGAL VARIABLE NAME~l - -- - - -

There are three types of variable that you can use in your
programs.

WHOLE NUMBERS

The first type is where the variable represents a whole
number, like 1 or 666. These variables are perfect for
holding the sort of values used in computer games. For
example:

~ HISCORE~1000000

Print HISCORE

Whole numbers are called "integers", and integer
variables can be as high as 147,483,648 and as low as
-147,483,648.

REAL NUMBERS

Variables can also represent fractional values, such as
1.2 or 99.9 and results from this sort of variable will be
accura te to seven decimal places. Real number variables
must always have a "hash" symbol tacked on to the end
of their names, which looks like this #. For example:

~ REAL NUMBER4I~3 .14

Print REAL_NUMBER4I

51

Chapter 4

Inputting
values

52

THE BARE BONES

STRING VARIABLES
This type of variable holds text characters, and the
length of that text can be anything from 0 to 65,500
characters long. String variables are distinguished from
number variables by a $ character on the end of their
names, to tell Easy AMOS that they will contain text
rather than numbers. For example:

IW NAME$~"Name"
GUITAR$~"Twang"

Print NAME$,GUITAR$

If you want to put information into a variable while a
program is running, there is a special command that
loads values typed direcly from the keyboard.

INPUT
When you use the Input command, you can invent some
text to act as a "screen prompt" if you like, in which case
you must put a semi-colon between the text and your
variable list, like this:

IW Input "Tell me your name ... "; NAME $

Print "Hello ";NAME$

To make that work, [Run] it, answer the screen prompt
and then press the [Return] key. Now add a semi-colon
to the end of the first line, and notice how your text
appears at the position of the flashing text cursor, after
you have typed in your data. When you understand
how that works, put your computer to work with this:

IW Input "Give me two numbers to add:";A,B

Print A; M plus"; B; " equals "; A+B

Chapter 4

ARRAYS

Creating an
array

THE BARE BONES

See how Easy AMOS automatically provides question
marks to prompt your next input. Now try and input a
text character instead of a number, and Easy AM OS will
spot the mistake and ask you to go back to the beginning
of the input process with this message:

Please redo from start

Supposing you want to use a whole set of similar variables
for something likea table of football results ora catalogue
for your record collection. No problem. Any set of
variables can be grouped together in what is known as
an "array".

Let's say you have 101 titles in your record collection,
and you want to tell Easy AMOS the size of the table of
variables needed for your array. There is a special
keyword for setting up this dimension.

DIM

This is used to dimension an array, so the variables in
your record collection table could be set up like this:

IJ:g" Dim ARTIST$ (100) ,TITLE$ (100) , YEAR (100)

Element numbers in arrays always start from zero, so
your first and last set of entries might contain these

~c-n::.!'1 variables:

IJ:g" ARTIST$ (0) ="AC/DC"

TITLE$(O)="Blow Up Your Video"

YEAR(0)=1988

ARTIST$ (100) ="ZZ Top"

TITLE$ (100) ="Afterburner"

YEAR(100)=1985

53

Chapter 4

FUNCTIONS

Finding the
length of a
string

54

THE BARE BONES

To extract elements from your array, you could then use
something like this:

~ Print TITLE$(O) ,YEAR(O) ,ARTIST$(O)

Print TITLE$(100) ,YEAR(100) ,ARTIST$(100)

These tables can have as many dimensions as you like,
and each dimension can have up to 65,000 elements.
Here are some modest examples:

Dim ARRAY (5) ,NUMBERf(5,5,5),WORD$(5,5)

There is a whole set of bones in your Easy AMOS
skeleton known as "functions". These are keywords that
have one thing in common: they all work with numbers
in order to give a result. To make it easy to recognise a
new function when it appears in this guide book for the
first time, we have placed an "equals" sign in front of it,
like this:

=FUNCTION

Easy AMOS provides you with a range of functions used
with strings, SO let's go back to your record collection
and start manipulating some strings.

=LEN

To discover the number of characters stored in a string,
in other words to find out its "length", the LEN function
looks at the string and tells you this number. See how
this works with the following example:

Dim TITLE$ (2)

TITLE$ (0) ="These"

TITLE$ (1) ="Titles"

TITLE$ (2) ="Get bigger and bigger!"

Print Len (TITLE$(O»

Print Len (TITLE$ (1»

Print Len (TITLE$(2»

Chapter 4

Finding
characters in a
string

THE BARE BONES

Supposing you want to search through your data, and
find out all the records you bought in a particular year,
or all the albums recorded by a certain artist, or even all
the titles in your posession containing the word "bum".

=INSlR

This function looks to see if a particular string occurs
inside another string. If the search fails, a result of zero
is given, but if the search is successful then its poSition is
reported. Type in this routine:

ICG" Input "Give me an album title:";A$

Input "What word am I searching for?" i B$

Print Instr(A$,B$)

Now [Runl that routine, and experiment with your
input strings to test the searching process. For example,
you could type in these inputs and see the results:

AFTERBURNER

BURN

BURNING LOVE

BURN

BERNADETTE

BURN

55

Chapter 4

Reading
characters
in a string

{~ \
(l [\~

56

THE BARE BONES

Normally the search will start from the first character in
your text string, but you can start the process from any
position you like in the string. Thisisdoneby adding the
number of characters from the left of the string which is
to become the new start position for the search. For
example:

ICY' Print Instr (EASY AMOS BASIC", "SIC")

Print Instr ("EASY AMOS BASIC", 'SIC", 14)

There are three sets of functions tha t are used to read
certain characters in a string, and their names give clues
to what they are used for.

=LEFT$

=RIGHT$

=MID$

See what result these three lines give:

ICY' Print Left$ ("Easy AMOS", 4)

Print Right$ (Easy AMOS', 4)

Print Mid$ ("Easy AMOS", 3, 5)

Notice how Left$ and Right$ return the number of
characters given in the brackets, starting from the left
hand and right-hand end of the string, respectively.
Similarly, Mid$ returns characters from the middle of a
string, with the first number in the brackets setting the
offset from the start of the string and the second number
setting the number of characters to be fetched.

Chapter 4

Replacing
characters in a
string

Placing
characters in a
string

THE BARE BONES

These three functionscanalso be used to tell Easy AMOS
to replace characters in one string with characters copied
from another string. For example:

IUii" A$="Very Dull BASIC"

Left $ (A$, 9) ="Easy AMOS"

Print A$

B$="means streets"

Right$(B$,8)=" superb

Print B$

C$="AMOS Basic"

Mid$ (C$, 6,3) ="Mag"

Print C$

=INPUT$

To enter characters into a string variable straight from
the keyboard, this function will wait patiently for you to
type in the number of characters you specify in brackets.
Press [Return] after you enter each character when you
[Run] this routine:

~ Print "Please type in ten characters"

A$=Input$(lO) : Print "You typed ";A$

This can be used for inputting passwords, which
shouldn't be seen on screen.

57

Chapter 4

Copying
characters from
a string

Converting
strings

58

THE BARE BONES

=STRING$

If you need to create a new string full of copiesofthe first
character in an existing string, this function does just
that. Simply include the numberof copies you want, like
this:

IrP" Print String$ ("Easy AMOS", 10)

That example produces a new string containing ten
copies of the character "E".

=VAL

=STR$

This pair of functions is used for string conversion. VAL
will convert a list of decimal digits already stored in a
string, and change them into a number. For example:

IrP" X=Va1 ('1234")

Print X

To perform the reverse task, STR$ converts a real number
variable into a string, like this:

IrP" X$~Str$ (1234)

Print X$

Now that your programming skeleton is ready to obey
your commands, the next Chapter will show you how to
give it a logical brain!

Chapter 5

LOGIC

o labels

o loops

o conditional loops

o numbered loops

o steps

o subroutines

o conditional jumps

o procedures

o nesting

"Crime is common.
Logic is rare. "

(Sir Arthur Conan
Doyle, 1893)

59

Chapter 5

DECISIONS

7

"1 been wrestlin'
and prll!Jin' and 1
know th' truth at
last. "

(Amos, Cold
Comfort Farm,

1932)

LABELS

LOGIC

A computer program is nothing more than a bunch of
commands that tell your Amiga what to do. If the
computer only obeyed a list of instructions one after the
other, programs would be very limited and very boring.
The magic begins when you teach your machine to think
for itself and start making decisions!

The simplest way to get a computer to make a decision
is to show it something, and then offer it a choice of
things to do depending on what it sees. If computers
understood plain English we would say something like,
"Look out the window. If it's daytime then go to San
Francisco. But if it's not daytime, go to bed."

When this sort of choice is given with Easy AMOS, the
computer looks at the condition on offer, and decides if
that condition is true or false. If it's true, then the Amiga
decides to take one course of action, but if it's false
another course of action will be taken.

One course of action could be to jump to a new place
somewhere in the list of commands. So you need a way
of marking parts of your program with a "label" before
telling the computer to go to that label marker and carry
out whatever instructions are there. Thisisdeadeasy. A
label is set up by giving ita name, then tacking on a colon
character so the computer can recognise it and not
confuse it with anything else. You can use any letters or
number characters you like, including the "underscore"
character. Here's an example of a label:

SAN FRANCISCO:

Chapter 5

Going toa
label

Goingtoa
numbered line

Going to a
variable

LOGIC

GOTO

By using label markers, you can now jump to anywhere
you like in the program with a GOTO command. Type
in this routine which includes the label in that last
example, and make sure you understand how it works.
Normally, you would have to wait for three minutes to
find out if it's day or night:

W Print "What time is it?" : Wait 100

Goto SAN FRANCISCO

Wait 180000

SAN FRANCISCO:

Print Dlt must be daytime!"

Any line in your Easy AMOS programs can be identified
by a line number, and you can command the program to
GOTO a particular line number too. Here is an example
of jumping to a line number:

W Goto 5

Print "I am being ignored. u

5 Print "I am line 5."

Don't confuse the numbers that you give your lines with
the number of lines in your programs. In the last
example, line 5 is obviously not the fifth line in the
routine! In fact this is an old-fashioned way of
programming, and labels are much easier to remember
and to spot when you look through your programs

You can command the program to GOTO a variable as
well,and that variable can be any normal "string" or any
number. This example uses one label marker to BEGIN
the routine over and over again, and another one to jump
into the BED with the right number.

61

Chapter 5

MAKING
DECISIONS

62

rr:Jr' BEGIN

Goto "BED" + "2"

End

BED1 :

LOGIC

Print"This Bed will never be used"

BED2:

Print"Welcorne to Bed number two"

wait 10

Goto BEGIN

The time has come to let your Amiga begin to think for
itself, and make a decision without any help from you.

IF

THEN
These two command words have a similar meaning in
Easy AMOS as they do in normal English. IF a condition
is true THEN the computer will decide to take one
course of action. If it is not true, the machine does
something else. Run this little routine, then watch the
computer decide what time it is.

ICV' NIGHT~l

DAY~l

Print"What time is it now?" : Wait 150

If NIGHT~DAY Then Goto BED

Print"Time I bought a watch"

Goto WATCHMAKER

BED:

Print "I think it is bed time"

WATCHMAKER:

Chapter 5 LOGIC

Now change the value of NIGHT to another number,
and run that routine again. IF you are sure you
understand how thecompu terreaches its decision THEN
GOTO the next paragraph, or ELSE try again.

ELSE

Your computer also understands the word ELSE when
making decisions as to whether something is true or
false, so you could change that last routine to something
like this:

DAY~l

If NIGHT~DAY Then Goto BED Else Goto POT
BED:

Print ~True" End

POT:

Print "False"

There is an even better way to use IF that can trigger off
a wholerangeofinstructions,dependingon theoutcome
of a single decision. The jargon for this sort of process is
a "structured test".

IF

END IF
In a structured test. you don't use THEN at all. The test
is set up with an IF, and ended with END IF. Every IF
statement in your program must be paired off by its own
END IF, to tell the computer exactly which bunch of
instructions get carried out inside the test. Try out a
structured test now, by typing this in exactly and then
running it:

63

Chapter 5

Using logic

64

LOGIC

IU7" Input"Type values for A, Band C "; A, B, C

If A=B

Print"A equals B";

Else

Print"A is not equal to B

If A<>B and A<>C

Print"or to e"

End If

End If

In that last example you used the characters "=" and "<>"
instead of words, as a sort of short-hand, which your
computer had no trouble in understanding. So you
better understand what they mean too!

= means "is equal to"

<> means "is not equal to"

> means "is greater than"

< means "is less than"

>= means "is greater than or equal to"

<= means "is less than or equal to"

How about writing a simple computer game to test out
what you've learned so far! It's a genuine game oflogic
and the computer responds to anything that you throw
alit. Look at the way the program uses those short-hand
symbols to make a decision, then jumps back to the
SECRET label until itis satisfied. Notice how each IF has
its own END IF, and how ELSE is used. There's a new
command near the beginning too. CLS stands for "clear
the screen", and you'll be learning more abou ttha t in the
next Chapter. As for now, write this game, then go and
find some friends to inflict it on!

Chapter 5 LOGIC

IIi?' Print "Ask your friends to shut their eyes."

Print 'Now you think of a nl.lII'ber betW€;en~

Print "1 and 100 and type it in secretly."

Input A

Cis

Print HAsk your friends to open their eyes. ~

Wait 250

SECRET:

Print "FIND THE SECRET NUMBER"

Input B

If &oA

Print "WELL DONE!"

Else

IfB<A

Print 'WRoNG go higher" Goto SECRET

Else

If B>A

Print "WRONG try lo~r"

End If

End If

End If

Goto SECRET

65

Chapter 5

LOOPS

(
<

Leaving a loop

66

LOGIC

Now havea try at injecting some extra fun into thegame,and
add as many ELSE ... IF ... END IF tests as you likeafter the Print
'WELL WNE" statement. For example:

I&' Else

If B>~101

Print "Keep your guesses below 100"

Goto SECRET

Don't forget to add another END IFat the end of the prograrn.

To write a separate routine foreach choice of the 100 numbers
in that game could get very tedious, and to end up with 100
END IFs is not a very neat way of programming. Thankfully
Easy AMOS offers all sorts of short cuts to help you repeat
sections of your computer program. These "loops" repeat a
routine for as long as necessary.

DO

LOOP

This pair of commands will loop a list of statements forever!
Wis used asa marker position in the program for the LOOP
to come back to. Try this:

I&' Do

Print "INFINITY" wait 25

LOOp

Now that you've locked yourself into an infinite loop,
you better learn how to escape from it.

EXIT

This little command word tells the program to leave a
loop right away, and you can use it to escape from any
of the sorts ofloops you will come across in this Chapter.
Because you can have lots of loops inside one another,
when you use EJ(]Tby itself only the innermost loop will

Chapter 5

Conditional
loops

LOGIC

be given a short circuit to stop it. But by adding a
number after EXIT, the program will understand how
many loops you want to leave. Here's an example:

JIY> Do

Do

Input "Type in a nUmber"; X

Print "I the inner loop " am

If X~l Then Exit

If X~2 Then Exit 2

Loop

Print "I am the outer loop~

Loop

Print "And I am outside both loops"

WlllLE

WEND
This pair of commands makes the program repeat a
group of instructions all the time a particular condition
is true. The condition is checked at the start of the loop.
WHILE marks the start of this sort of loop, and WEND
must be used to position the end of it. Try this simple
logic rou tine:

JIY> BLAZES:

Print "Please type in the number 9"

Input X

While X~9

Cls : Print X Wait 50 Goto BLAZES

Wend

Print "That' 5 not a 9! ~

67

Chapter 5

i
\
~ .•...

Numbered
loops

68

LOGIC

All the time you obey the screen's wishes by typing in 9,
the routine will be repeated. But as soon as you type in
another number, you jump out of the loop.

REPEAT

UNTIL

Unlike that last example, instead of checking if a condi lion
is true or falseat the start of a loop, this pairof commands
is used to check at the end of the loop. As you might
expect, REPEAT marks the start of the loop, and it must
be paired by UNTILattheend of the loop. Thisexample
will go on and on, waiting for you to press a mouse
button:

II? Repeat

Print Q r can wait forever" Wait 15

Until Mouse Key<>O

Easy AMOS is continually checking the state of the
mouse, so the only way to activate the Until condition in
that example is to press a mouse button.

It's all very well handing over the business of making
decisions to the computer' sownlogic, but what happens
when you want to repeat a loop for the number of times
YOU want? No problem. 5ections of your program can
be looped to order!

FOR

NEXT

This pair of control words is one of the programmer's
classic tricks. Try this now for an instant demonstration
of a FOR. . .NEXT loop:

II? For X~l To 7

Print 'SEVEN DEADLY SINS"

Next X

Chapter 5

Steps

LOGIC

Now try this:

n:7 For DAY=l To 365

Print DAY

Next DAY

TO
The number of DAYs that have just been printed run
from the first TO the last value that you have set.
Obviously, the numbers go up one at a time. But
suppose you want to change the rules, and onlyprintout
one day for every week of the year. Imagine you are
climbing a long staircase, one step at a time. Now
imagine that you can change the length of your legs to
any size you feel like!

STEP
All you have to do to change the size of your step is this:

n:7 For DAY=l To 365 Step 7

Print DAY

Next DAY

Now change the size of your step to once every 28'days,
or whatever you like, and see the result.

SUBROUTINES Littlegroupsofdancestepsinastageshowaresometimes
called 'routines". Packages of program instructions that
do a specific task can be thought of as routines too. In
which case, it's not too hard to think oflittle packages of
instructions as ·subroutines·.

GOSUB
RETURN
GOSUB is a command which is short for "GO to a
SUBroutine", and Easy AMOS has stolen it from the
antique days of programming. It works in much the
same way as GOTO. For example, if you wanted to jump
to a routine marked by a label, you could use this:

69

Chapter 5

"Go, and do not
return until
everything is
achieved. "

(Joseph Stalin,
1941)

70

LOGIC

Gosub LABEL

Alternatively, you can force your program to jump to
the group of instructions that start with a particular line
number. For example to jump to a subroutine labelled
line 10, you would use this:

Gosub 10

Labels and line numbers don't have to be invented by
you. The computer is quite capable of creating them as
the result of an expression, and you can get your GOSUB
to jump to the result of any expression you want, like
this:

Gosub X+10

When your program obeys a GOSUB instruction, you
can't leave it hanging around there wondering what to
do next, so it has to be told to RETURN to the main
program. This example demonstrates how:

~ Print "This is the main program"

For HOW~l To 3

Gosub TEST

Next HOW

End

TEST:

Print "Here we go GOSUB" Wait 50

Print "How equals"; HOW

Return

Chapter 5

Conditional
jumps

LOGIC

So far, you have learned how to let the computer work
out when to jump to another part of the program by
taking logical decisions based on all sorts of situations
that are either true or false. Now you need a way of
planning ahead, and getting the program to make the
same kind of jumps whenever it recognises a particular
variable. In normal English this would be like saying
"Jump to where I tell you ON the following occasion." In
Easy AMOS, it's just as simple.

ON
This control word can be used to force the program to
jump when it recognises a particular variable. But even
better than this, the program can be made to jump to all
sorts of different locations, depending on the value the
variable holds when it is spotted.

ON ... GOTO
Try out this little program. It will jump to any of the four
possible labels, depending on what value you give X.

IIY' Print "GIVE X A VALUE FROM 1 TO 4 "

Input X

On X Goto LABELl, LABEL2, LABEL3, LABEL4

LABELl:

Print "One for the moneyH

LABEL2:

Print "Two for the show"

LABEL3:

Print "Three to get ready"

LABEL4:

Print "Go cats go"

71

Chapter 5

PROCEDURES

'We have
procedures
for everything.
Even going to
the bathroom!'
0. Edgar Hoover,

1955)

72

LOGIC

For that to work properly, X must have a value from 1 up to
the number of the highest possible destination, so if you give
X a value of zero or five, for example, things will go wrong. In
fact the third lineof that program isa very economical way of
writing the following lines:

If X~l Then Goto LABELl

If X~2 Then Goto LABEL2

If X~3 Then Goto LABEL3

If X~4 Then Goto LABEL4

Now change the program by swapping around the label
numbers, and see what happens.

ON_GOSUB

Exactly the same system can be employed with a GOSUB
instead ofcaro. To get the program to jump back to the next
instruction after an ON ... GOSUB statement, use RETURN in
the usual way.

This Chapler is all about giving your program skeletons a
logical brain, so what can be more logical than concentrating
on one problem at a time to avoid getting into a complicated
mess! This is exactly what "prooedures" are used for. 1hey
help you avoid side-tracks and wrong directions by creating
small, independent program chunks.

PROCEDURE

ENDPROC
A procedure is created in exactly the same way as a normal
variable, by giving it a name. The name is then followed by a
listofparamelers,andtheproceduremustbeendedbyanEnd
Proc command. Procedure and End Proc commands MUST
be plaoed on their own individual lines. For example:

~ Procedure HELLO

Print ~Hello, I am a procedure!"

End Proc

Chapter 5

Local variables

Global
variables

LOGIC

If you try and [Run) that example, nothing will happen.
This is because a procedure must be called up by name
from inside your program before it can do anything.
Now add the following line at the start of that last
example, and [Run) it.

~ HELLO

To help you find the starting positions of procedures in
a very long program, Easy AMOS offers a simple short
cut, using two keys. By pressing the [All) key and the
[Down Arrow) key together, your edit cursor will jump
to the next procedure definition in your programs. To
jump to the previous procedure, simply press [All) and
[Up Arrow) together. This short-cut works equally well
with labels and line numbers!

All the variables that are defined INSIDE a procedure
work completely separately from any other variables in
your programs. We call these variables "local" to the
procedure.

All the variables OUTSIDE of procedures are known as
"global" variables and they are not affected by any
instructions inside a proced ure. So it is perfectly possible
to have the same variable name referring to different
variables, depending on whether or not they are local or
global.

GLOBAL
In a large program, it's often convenient for different
procedures to share the same set of global variables,
because this offers an easy way of transferring large
amounts of information between the procedures. The
Global command sets up a list of variables that can be
accessed from ANYWHERE in your program. Try this
example:

73

Chapter 5

Returning
values from
procedures

74

Global A,B

TESTl

Print A,B

TEST2

Print A, B

Procedure TESTl

A~A+l : B~B+l

End Proe

Procedure TEST2

End Proe

=PARAM

LOGIC

If you want to return a value or a "parameter" from inside a
procedure, you need a way of telling your program where to
find this local variable. The Paramfunction takes the result of
an expression in an End Proc statement, and returns it to the
Param variable.

PARAM$

If the variable you are interested in is a shing variable, the $
character is used. Also note how the pairs of square brackets
are used in the following example:

II:§'> JOIN_STRINGS ["one", "two", "three"]

Print Param$

Procedure JOIN_STRINGS[A$,B$,C$]

Print A$,B$,C$

End Proc[A$+B$+C$]

PARAM#

For real number variables, the # character must be used. For
example:

Chapter 5

Jumping into a
procedure

Jumping out of
a procedure

LOGIC

~ JOIN_NUMBERS [1.5,2.25)

Print Param#

Procedure JOIN_NUMBERS[A#,B#)

Print A#, B#

End Proc[A#+B#)

ON . ..PROC

You have already learned how On can be used to jump to a
Gosub routine,and irs just as easy to use On for jumping to a
procedure. In this case, if a variable holds a particular value,
you set up the instruction as follows:

On X Proc PROCEDURE1,PROCEDURE2

Which is the same as saying:

If X=l Then PROCEDURE1

If x=2 Then PROCEDURE2

Of aJUrse you can have as many values triggering off jumps
to as many procedures as you want.

POPPROC

Procedures will only return to the main program when the
End Proc instruction has been reached. But supposing you
need to jump out of a procedure immediately. The Pop Proc
instruction provides you with a quick getaway! Try this:

~ Procedure ESCAPE

For PRISON=l To 1000000

If PRISON=10 Then Pop Proc

Next PRISON

Print "I am abandoned."

End Proe

Print "I'm free!"

75

Chapter 5

"My record
stands for
itself·"

(Margaret
Thatcher, 1990)

76

LOGIC

In the next Chapter, you will discover how to handle
text. As a prelude to that, here's a demonstration to try
out using procedures as well as some new text
commands. Type it in stage by stage.

The first line turns off the cursor, and sets the colour of
the background screen. Then data is placed inside the
square brackets, ready to be sent to a procedure. In this
case, our data will bea record of some incredibly famous
people, giving their first name, surname, age and
occupation.

W Curs Off : Paper 0

RECORD [DFrancois", uLionee ,28, ~Genius"]

Leave that on screen, and now caIl the same procedure
with different parameters, by adding these lines:

W RECORD ["Easy" ,"=S", 1, "Carputer Cult"]

RECORD ["Mel" , "Croucher', 43, "unenployed"]

Now set up additional data in variables, by adding these
lines:

W A$~"Richard"

B$="Vanner
u

AGE~24

OCC$~"Projects Manager"

RECORD [A$,B$,AGE,OCC$]

Here comes the procedure. Add these lines to your
example, and then [Run] the program.

Chapter 5

NESTING

LOGIC

~ Procedure RECORD[NAME$,SURNAME$,AGE,CCC$]

Cis 0

Locate 0,3

A$~NAME$+" "+SURNAME$

Centre A$

Locate 0,6

A$~"Age: "+St r$ (Age)

Centre A$

Locate 0,9

A$~"Occupation: "+OCC$

Centre A$

Locate 0,16

Centre "Press a key"

Wait key

End Proc

Many of the examples in this book are set out in a rather
fancy way. Little blocks of the programs have been
"indented" by placing extra spaces at the start of their
lines. This isn't just to make them look prettier (although
there's nothing wrong with beautifying the way your
programs look) it helps to identify certain routines in
your listings.

By pressing the function key [F3] while in the Edit mode,
Easy AMOS automa tically indents your program listing.
When programmers place a block of program like a
subroutine inside another block, they call it "nesting",
and these nests can be marked by indenting them.

77

Chapter 5

78

LOGIC

Because you are well on the way to being a computer
programmer, you can start taking the ideas shown in
these Easy AMOS examples and use them, change them,
link them up and expand them for your own
programming ideas. Sooner or later your home-grown
programs will consist of a lot of routines, and they will
take up a lot of lines, so don't forget to make use of Rem
statements, labels, and indented nests to find your way
around. You won't regret it.

Now that you've got the idea about making the layout of
your programs easy to read, the next Chapter isall about
how to work wonders with the appearance of the text
you see on the screen.

Chapter6

TEXT

o the character set

o using text

o text coordinates

o moving text

o the text cursor

o text style

o fonts

"The secret of all
good writing is
sound judgement."

(Horace, 13 B.c.)

"The thundering
text, the snivelling
commentary. "
(Robert Graves, 1946)

79

Chapter 6

The character
set

80

TEXT

This Chapter explains how to use the advantages of Easy
AMOS for handling written text.

Old-fashioned typewriters use tiny hammers to bash
ou t preset characters, and more modem machines allow
you to swap between a series of different factory-made
character designs called "fonts". The trouble with
typewriters is that if you make a mistake on paper or
want to change text around, you have to use erasers,
scissors, glue and a lot of wasted time.

Easy AMOS gives you the freedom to use and create all
sorts of text characters, and to handle text as you please,
whether you want to design your own newsletter, put a
hi-score table in a game, invent dialogue boxes, make a
schedule for the tax-man or write a letter to Santa Claus.

Let's see what pre-set characters are available, by running
the next routine using a For .. .Next loop that you learned
about in the last Chapter:

IJj;" For C~O To 255

Print Chr$(C);

Next C

You should now have six lines of characters on your
screen, containing symbois, ietters, numbers and graphic
characters. If you want to take the time to count them all,
you'll discover that the first 32 are invisible. That's
because they are reserved for Easy AMOS to use for
special purposes.

Computers need some way of recognIsing what
characters are being used, so each character has its own
code number from zero to 255. "Ascii" stands for
American Standard Codes of Information Interchange,
which is the code your computer uses for recognising
characters and talking to other machines like printers.

Chapter 6 TEXT

=CHR$
You have just asked Easy AMOS to PrintChr$ in that last
example line of code, in other words "please print me a
string that contains a single character with an Ascii code
numberrangingfromOto255." Find out which characters
have which Ascii codes now, bycallingupdifferent code
numbers like this:

W Print Chr$ (97)

=ASC

Next, try it the other way around, and use this function
to discover the Ascii code number of any character you
are interested in. For example:

W Print Asc ("A")

Print Asc ("M")

Print Asc ("0")

Print Asc ("5")

If you want to see the entire visible character set along
with their Ascii code numbers, run this routine:

W For C=32 To 255

Print Chr$ (C) ; .. =Ascii Code";

Print Asc (Chr$ (C» : Wait 50

Next C

If your typing speed is not too brilliant, you are going to
impress yourself by using your own typing tu torin the
next Chapter! Meanwhile, why not cheat a little.

During editing, a character or cursor movement is
repeated for as long as its key is held down. This can be
a bit frustrating when it causes unwanted characters or
cursor movements.

81

Chapter 6

Setting text
colours

82

TEXT

KEY SPEED

Is the command that changes the repeat rate while a key
is held down. Just say what time lag you want to use,
measured in 50ths of a second, followed by the delay
speed between each character you type, also in SOths of
a second. Slow things down a lot by running this:

W Key Speed 50,50 : Rem One second delay

Now see what effect this has when you hold down a key
while editing.

When you are tired of each repeat keystroke taking one
second to complete, type the next example:

W Key Speed 1,1 : Rem My brain hurts

Now run that example, then try to edit the key speeds
again. It's almost certain tha t your reflexes will have just
crumbled and you'll have to reset your Amiga!

The appearance of text can be changed in two main
ways: colour and shape. As you would expect, Easy
AMOS allows you to alter the way your text looks
simply and quickly.

This a good opportunity to go to the toilet, make a cup
of tea, switch off your computer, then reload Easy
AMOS when you're comfortable. Then you can be sure
that the colour presets are all in order.

Are you sitting comfortably? Then imagine that you
have a selection of up to 16 different coloured electronic
pens, along with 16 different coloured sheets of electronic
paper to write on. In fact, there isa much larger selection
than this, but we won't worry about that for now. Each
colour has its own index number, starting from zero,
and when you select colours you just call them up by
putting their index number after a Pen or Paper
command.

Chapter 6

Using Text

TEXT

PEN

This command sets the colour of your text. Try this:

IUl'" Pen 4 : Print "REDFACES"

Now see what current choice there is in your colour
index, using this routine:

IUl'" For INDEX~O To 15

Pen INDEX

Print "Pen number"; INDEX

Next INDEX

PAPER

Use this command to set the colour of the background
electronic paper on which you write text. Change paper
colours like this:

IUl'" Paper 4 : Pen 2 : Print "White on Red"

INVERSE ON

INVERSE OFF

This is an easy way of swapping over whatever Pen and
Paper colours are in use. Prove how simple this is by
running the following routine, choosing your own colour
index numbers:

~ Pen 2: Paper 4: Print II I am normal II

Inverse On Print III am inverse"

Inverse Off Print "1 am normal again"

There are two useful little functions you can play with to
change strings of text, and you may want to make more
practical use of them for handling strings in your own
programs.

83

Chapter 6

Screen text
coordinates

84

=LOWER$
=UPPER$

TEXT

This pair of functions do what you might expect, by
changing all the characters in a string into lower case
(small letters) or uppercase (capital letters). Typein and
run this little routine to see how they work:

W Print Lower$ ("Easy AMOS")

Print Uppers ("Easy AMOS")

When you tell Easy AMOS to Print some text, the
characters will be printed starting from wherever the
flashing line called the "text cursor" happens to be. For
example, when you begin some fresh printing,characters
appear starting at the top left-hand comer of the screen.
If you think of the screen as being divided up into a grid,
with each line of text forming the horizontal grid lines
and each character space forming the vertical grid lines,
then it is not difficult to think of the positions of each of
the grid spaces having their own reference point. We
call these screen positions the "text coordinates".

To establish the position of a character, the "x-coordinate"
is the number of character spaces from the left-hand side
of the screen, and the 'y-coordinate" refers to the number
of spaces from the top of the screen. So the top-left hand
comer would have x,y-<:oordinates of 0,0. Similarly, the
text coordinates 10,5 refer to a position on the screen that
is 10 characters to the right and five characters down
from the top left-hand comer. You will come across
different sizes of characters and even different sizes of
useable screen, but this general rule applies to them all.

When the screen displays text or graphics that you no
longer want, there isan instant way of wiping the screen
clear.

Chapter 6

Clearing the
screen

MOVING
TEXT

TEXT

CLS
This command stands for CLear the Screen, which is
exactly what it does. Print some characters now, then
wipe the screen clean before you give your next print
command, like this:

II:? Print "A load of rubbish" : wait 100

CIs Print "ALL CLEAR" : Wait 100

CIs

You can also clear a screen by filling it with your choice
of colour, using an index number from colour zero to the
maximum colour number available. Try doing it now,
like this:

II:? Print "I've got the blues" : Wait 200

CIs 6

There is no need to clear the whole screen. If you prefer
to clear part of the screen and leave the rest as it is, you
must type in special x,y-coordinates of the rectangle to
be cleared after you select the colour that will fill it. Tell
Easy AMOS the location of the top-left hand comer of
the new rectangle, then draw this rectangle TO wherever
you want the bottom right-hand corner to be. CIs uses
"graphic coordinates" instead of character coordinates,
and they are explained a little later. Don't forget to put
in the commas, even if you don't specify a particular
colour number. For example:

II:? Print "This is a black out" : Wait 175

CIs ,80,0 To 120,10

Sooner or later, you will want to make your text look
moreattractivebylocatingitatvariousscreenpositions.
To save you the trouble of measuring out spacings, Easy
AMOS gives you a whole series of simple short cuts.

85

Chapter 6

More text
locations

86

TEXT

LOCATE
This command moves the text cursor to whatever x,y
coordinates you choose. The new location sets the
starting point for all your text printing until you
command some other position. You are free to leave out
the x or the y-coordinate, but remember to use a comma
in place of their location number. So to print at a
particular place on the current line, omi t the y-coordina te
and try using something like this:

~ Loc"ate 5, : Print uFive from the left H

In the same way, to print at the existing distance across
the screen but on different lines, leave out the x
coordinate, like this:

~ Locate ,6 : Print "Six from the top"

Now experiment by printing at your own choice of
coordinates, anywhere on the screen. For example:

I&" Locate 7,8 : Print "X"

If you need to move the text cursor back to the top left
hand corner of the screen in a hurry, simply command
it to go Home!

HOME
Here is the command that automatically locates the
cursor to coordinates 0,0. Try this now:

I&" Cls : Locate 10,10 : Print "I am going"

Home : Print "home"

CENTRE
Centre is another useful command for locating text. In
this case a string of characters is placed at the centre of
the screen on the current cursor line, and you don't have
to use the Print command. For example, type this in:

Chapter 6

THE TEXT
CURSOR

TEXT

IW Locate 0,10

Centre "r am in the centre"

There is a special Easy AMOS function that lets you
change the position of where text is to be printed
whenevera particular string of characters crops up. This
is perfect for things like titles and hi-score tables.

=AT

This is the function used to set up this type of character
string, and all you ha vetodo is select thex,y-coordinates
for your characters by placing them in brackets, like this:

IW A$~At (10, 5) +"Hello"+At (20, 20) +"again"

Print A$

Once you understand how this works, try positioning
you own title or hi-score string, then call it up with a
single Print statement. For example:

IW HI SCORE$~At (5, 10) +"Today' s HI SCORE"

SCORE~1234

Print HI_SCORE$;SCORE

There will be times when you need to know exactly
where the text cursoris located. Nothing could be easier.

XCURS
YCURS
These two commands are used to act as variables for
holding the current location of your text cursor. So you
can call them up like this:

IW Locate 10,10

Locate 20,20

Print Xcurs

Print Ycurs

87

Chapter 6

Setting the text
cursor

~
88

CURS ON

CURS OFF

TEXT

These two commands can be used if ever you want to
hide the text cursor and redisplay it later on. This will
have no effect at all on your text or other cursors such as
the one used by the mouse. Make the text cursor
disappear and reappear now.

Do you want to change the appearance of the text cursor
and set it to something a bit more personalised?

The shape of the text cursor is made up in exactly the
same way as the shape of any other character: a little grid
of picture elements, called ··pixels· for short. A pixel is
the smallest point on your screen that you can
communicate with. Imagine it as a dot with its own
location reference. Each of the pre-set characters that
you see on screen is a little block made up of a grid of
pixels eight across and eight high. You have probably
guessed that you can change the shape of any character,
not only the text cursor, by changing the arrangement of
its pixels. You may also have realised that there is a
much more accurate set of coordinates using pixels
instead of text characters. But for now, let's concentrate
on understanding how pixels make up an individual
character.

Look at this diagram showing the individual pixels that
could make up the letter • A". Next to it, the same
character is represented by numbers.

o 0 o 0 o 0 0 0

o 0 1 1 1 1 0 0

o 1 o 0 o 0 1 0

o 1 o 0 o 0 1 0

o 1 1 1 1 1 1 0

o 1 o 0 o 0 1 0

o 1 o 0 o 0 1 0

o 0 o 0 o 0 0 0

Chapter 6 TEXT

Every pixel that is filled in with the current Pen colour
can be represented by a 1, and every pixel that has
nothing in it except the current Paper colour can be set
with a zero. So the bottom two lines of pixels in the text
cursor grid are filled wi th ones, and the rest with zeros.
The text cursor character also brings attention to i tself by
flashing on and off.

SET CURS

This allows you to set the shape of the text cursor to
anything you want. Change the list of pixels for each
numbered line of the grid using a special code, like this:

~ Ll~%llllllll

L2~%1l111110

L3~%1l111l00

L4~%1l11lOOO

L5~%1l1lOOOO

L6~%1l100000

L 7~%1l000000

L8~%lOOOOOOO

Set Curs L1,L2,L3,L4,L5,L6,L7,L8

If you have typed that in exactly and run it, your text
cursor will have altered shape,and turned into a triangle.
N ow try and change its shape to the first letter of your
name. When you've done that, turn it into anything you
want, like a stick man or a rocket.

Try and input this sort of number and make its sequence
begin with zeros, like this:

Ll=%OOOOOlOO

89

Chapter 6

Setting text
style

90

TEXT

Easy AMOS will automatically remove the zeros, and
change the appearance of the number. For example:

Ll~%lOO

This is quite normal. Easy AMOS prefers to strip away
these leading zeros in the display, but their values are
completely unchanged.

FLASH

FLASH OFF

If you don't want your text cursor to flash, you can turn
it off and then turn it back on again by using the
commands Flash or Flash Off, like this:

IG? FlashOff : Set Curs Ll, L2,L3, L4, LS, L6, L7,L8

Time for some fun. You are now going to change the
entire appearance of your text characters by mixing any
one of eight selections that combine these three styles:

Underline

Bold

Italic

You can choose from a range of zero to 7 to mix and
match these style combinations, using the Set Text
command.

SET TEXT

This is the command that changes the appearance of
your text, and all that's needed is a style number to
follow it. Display the available choice now, by typing in
this routine:

IG? Cls : For S~O To 7 : Set Text S

Text lOO,S*20+20,"Easy AMOS· : Next S

Chapter 6

Graphic text

TEXT FONTS

TEXT

If you ever need to know which text style is being used
at any time, all you have to do is ask.

=TEXT STYLES

This is the function that reveals the index reference of the
text style you last selected using Set Text.

Jr7set Text 2 : Text SO,SO,"Style two"

Print Text Styles

You may have spotted the fact that a new command
called Text has been introduced in those last two
examples, and that the coordinates seem to be much too
wide to fit on the screen. This is because you have started
to use what is known as "graphic text" instead of the
normal pre-set characters,and graphical text is posi tioned
using x,y-coordinates numbered in pixels, not characters.

All the drawing and graphics operations are expl<lined
in Chapter 8, along with easy-to-use ways of getting the
best out of graphic text. For the moment, try to
understand that there are two different types of font for
use in Easy AMOS. "Text fonts' are used for sets of
characters that can be used by the Print command.
"Graphic fonts' are much more flexible in terms of style,
size and shape.

Now it's time to reveal a little bit of Easy AMOS text
magic.

The designs of the characters that appear on your screen
makes them easy and practical to use and read. In the
old days, sets of characters were cast in metal moulds for
printing onto paper,and each set of designs had its own
font name. If you wanted to change fonts, all you had to
do was design new shapes, carve them into stone, boil
up a cauldron of molten lead and cast each character in
a new mould. It only took a few days.

91

Chapter 6

92

TEXT

And now for some good news. There are hundreds of
different fonts available for use with Easy AMOS at the
touch of a button!

GET FONTS
SET FONT
Your "Easy AMOS Program Disc" contains new fonts
ready to be used, and as you would expect, each font has
its own index number. The Get Fonts command sets up
a list of the different fonts available on your current disc,
and you must use it before making any changes to font
settings. Then use Set Font to select the style of text to be
used. For example:

(G;? Get Fonts

For A~O To 100

Set Font A : T$~"EaSy l\M)S Font" +Str$ (A)

Text 50,100,T$

Wait key : CIs
Next A

In practice, you will probably want to Get Fonts at the
beginning of a program, so that you can use Set Font
later on as many times as you need.

=FONT$
If you want Easy AMOS to give you details about the
available fonts, use this function followed by a pair of
brackets containing the font number you are interested
in. Add the following line to the last routine:

(G;? Get Fonts : Set Font 2

Print Font$ (2)

There should now bea report line at the top of the screen
describing font number two, as follows: the name of the
font, the height of the font in pixels and the status set to
either Disc or Rom (meaning held in memory).

Chapter 6

Adding more
fonts

Clearing fonts
from memory

Selecting a font
by name

Creating your
own fonts

TEXT

Your Amiga "Workbench" disc may well have a whole
range of extra fonts on it, and Easy AMOS is happy to use
them. In addition, there are hundreds of different fonts
available on commercial and public domain discs, and
you may even want to design your own. New fonts can
be installed on your "Easy AMOS Program" disc, and
remember never to use the original, but your own copy
for this purpose! Copy new font files into the FONTS:
directory of the disc.

Here is a neat way to clear any fonts from memory that
are not being used. Ifs a procedure that tries to reserve
a huge amount of memory, and creates an "out of
memory" report. This forces the Amiga to perform a
"garbage collection" which gets rid of your unwanted
fonts automatically.

IUr' Procedure WIPE FONTS

On Error Goto SKIP

Erase 15 : Reserve As Work 15,10000000

SKIP: Resume SKIP2

SKIP2:

End Proc

To see how fonts are selected by name, open the
"'Text_ Tutorials" folder on your" Easy AMOS Tutorial"
disc, and load this ready-made example:

Text_Tuto r ial01.AMOS

There are two amazing programs on your "Easy AMOS
Examples" disc, that make superb use of home-grown
fonts. First of all load:

Font_Creator.Amos

93

Chapter 6

94

TEXT

As you can see from the listing, this program will transfonna
normal font intoa giantgraphicfont. You can select anything
from simple black and white characters, to cut-outs of fully
rolouredpictures! Whenyou [Run) theFontCreator,you'lIbe
asked to select an available font from your "Easy AMOS
Programs" disc, and then you can enlarge it with a built-in
"zoom" facility. Evel)'thing is explained on screen or in the
listing.

If you want to see some even more superb effects, load
up this example program next:

Scrolling_Text.AMOS

This demonstration scrolls special effects across your
screen, and is guaranteed to give you some instant fun.
You can use your own fonts, made with the Font Creator,
and all the practical steps are set out in the listing. Any
keywords or programming ideas that you haven't yet
come a,ross will soon be explained in this book.

Chapter 7

WORKING WITH
THE KEYBOARD

o moving the text cursor

o setting tabs

o checking for a keypress

o the Easy AMOS Typing Tutor

o keyboard short-cuts

"/ like the
keyboards, you
get to sit down
more."

(Paul McCartney,
1990)

95

Chapter 7 WORKING WITH THE KEYBOARD

This Chapter explains some of the tricks of the
programmer's art which control the way information is
printed, and it also explains how you can exploit the
keyboard in your programs. Let's start with a very
simple example:

IJjlP Print "r have been printed"

Now try this:

IJjlP ? "r have also been printed"

PRINT or?

The question-mark character acts in exactly the same
way as the Print command, when you use it at the
beginning of a line. Easy AMOS will automatically turn
"?" into "Print" when the line is recognised. The list of
items to be printed can be up to 255 characters long, and
it will appear starting from wherever the text cursor is.
You can break up your list into separate elements by
putting them inside their own pair of quotation marks,
and linking them together with a semi-colon, like this:

IJjlP ? "Easy"; "AMOS"

Moving the text Now change that example by linking your elements
cursor with a comma instead of the semi-colon;

96

lr:ff' ? "Easy" f "AMOS"

Using the semi-colon causes your data to be printed
immediately after the previous value, but a comma
moves the cursor to the next "Tab" position on the
screen. A tab is an automatic marker that sets up a
location for printing, and is often used to layout columns
of figures, or to make indentations in text. The use of the
[Tab] key is explained in a moment.

Chapter 7

"A kiss can be
a question mark
or a comma.
That's the only
punctuation I
ever learned. "
(Madonna, 1991)

Setting Tabs

Checking for a
keypress

"Life is like
a tin of
sardines:
we're all
looking for
the key."

(Alan Bennett,
1964)

WORKING WITH THE KEYBOARD

Normally, the cursor is advanced downwards by one
line after every Print command. But by using the semi
colon or comma, you can change the rules. Here's an
example:

IIJir' Print "Easy"

Print uAMOS "

Print "Ea"j

Print "sy",

Print "AMOS"

The [Tab] key is the large key above the [Ctrl] key on the
left-hand side of your keyboard. Go into the Edit Screen,
and tryout the [Tab] key now. Every time you press it,
the edit cursor jumps forwards to the next tab marker.
Now press [Shift] and [Tab] together, which causes the
cursor to jump backwards one tab.

To change the tab settings, press [CtrIJ and [Tab] at the
same time, look at the prompt in the Information Line,
type in your choice for a new tab value, and then press
[ReturnJ. Test out various tab settings now.

As welJ as using your keyboard for typing in programs,
it can also be used to interact with your routines once
they are running.

=INKEY$

This function checks to see if you have pressed a key, and
reports back its value in a string. For example:

IIJir' Do

X$~Inkey$

If X$<>"" Then Print "You pressed a key!"

Loop

97

Chapter 7

98

WORKING WITH THE KEYBOARD

Now use the Inkey$ function to move your cursor
around the screen, like this:

~ Print aUse your cursor keys"

Do

X$=Inkey$

If X$<>" , Then Print X$;

Loop

Try typing in characters as well as moving the
cursor, and see what happens. The Inkey$
command doesn't wait for you to input anything
from the keyboard. If a character is not entered, an
empty string is returned.

Inkey$ can only register a key-press from one of
the keys that carries its own Ascii code, and the
Ascii numbers allocated to each character are
explained at the beginning of the last Chapter.
This is fine if you want to use Inkey$ for giving the
value of most key-presses, but .what about the keys
that don't carry an Ascii code, such as [Help]? If
Inkey$ detects a key-press from this type of key, it
will report that it's come across a character with a
value of zero.

=SCANCODE
This function helps to check for keys which don't
cause a character to be printed. It returns a special
key code, known as the "scan code" of a key which
has already been entered using the Inkey$ function.
Tryout this example:

Chapter 7

Interrupting a
program

WORKING WITH THE KEYBOARD

I(ff" Do

While K$=" n

Wend

If ABc (K$) =0 Then Print "No Ascii Code"

Print "The Scancode is";Scancode

K$=""

Loop

Test out that example by pressing various keys,
including [Del], [Help] and the function keys [FI]
to [FlO]. When you have had enough, interrupt the
program by pressing the [etrl] and [e] keys at the
same time.

BREAK ON
BREAKOFF

If you ever need to turn off the [etrll+[e] facility in
order to stop a program being interrupted while a
particular routine is running, the Break Off
command can be included in your listings. To
restart the interrupt feature, use Break On. But BE
WARNED, never run a program you are still editing
with Break Off activated, or you will lose your
work. Make a back-up copy first. If you insist on
ignoring this advice, try running this:

I(ff" Break Off

Do

Print "Get out of that!'

Wait key

99

Chapter 7

THE EASY
AMOS
TYPING
TUTOR

100

WORKING WITH THE KEYBOARD

Here' sa great way to improve your keyboard skills. The
Easy AMOS TypingTutornotonly helps you to improve
the speed of your typing, it also learns how well you are
performing and adapts itself to suit your progress. Load
it from your "Easy AMOS Tutorial" disc now:

Typing_Tutor.AMOS

Take a look through the listing and read the comments
to see how the program has been organised. There are
two levels, the "Typing Tutor Letter Game" which uses
single key presses, and the "Typing Tutor Phrase Game",
where you have to type in the words or phrases that
appear on screen as fast as possible.

You'll find examples of how Inkey$ and Chr$ are used
with Ascii codes, as well as a simple system for giving
you extra time if you press the wrong key and less time
when you type in the correct character. Although this is
a simple idea, it means that the TypingTutor will always
push you to your maximum potential!

Don't forget to tum up the volume on your system to
hear the sound effects, and [Run] the game. Select [1]
first, and giant individual letters will appear above a
timer-bar. Your score and speed are displayed at the
bottom of the screen. Keep a record of your best scores,
and see how they improve. Later on in this book, you'll
learn how to include your own hi-score routines and
title pages to tum this sort of practical program into a
proper game. You can always quit a game by pressing
[Esc] or [Ctrl]+[C].

Only the additional routines have been commented in
the "Typing Tutor Phrase Game" listing. You'll find a
bonus score, and a long list of "Data" statements where
all the phrases to be typed are held. You can change
them if you want. To try your hand at typing in whole
words and phrases, select option [2] when the title
sa:een appears. Good luck!

Chapter 7

Keyboard
short-culs

WORKING WITH THE KEYBOARD

You have already used several keyboard short-cuts,
such as [FI) to run a program, and the [?) key instead of
typing "Print". Make sure you have saved any important
programs that may be currently in memory, and get
ready to try out some more Easy AMOS techniques.

If it's not in place, load your "Easy AMOS Programs"
disc, go into Direct Mode, and look at the list of twenty
instructions displayed in the panel. You won't recognise
most of them, but they will become familiar as you
progress through later Chapters.

Each of these instructions can becalled up from anywhere
in the Easy AMOS system by pressing just two keys.
They can be called while you are in Direct Mode, or if
you are using the Edit Screen, or even from inside an
Easy AMOS program. To selectoneof these instructions,
you must press one of the [Amiga) keys either side of the
[Spacebar) at the same time as one of the function keys.
By pressing the LEFT [Amiga) key at the same time as
keys [Fl) to [FlO] the first ten instructions are called.
When you press the RIGHT [Amiga) key with keys [FI)
to [FlO] the instructions numbered II to 20 are given.

For an instant demonstration of this feature, press the
left IAmiga] key and [F3) together. This calls the Dir
command, which prints a directory of all the files held on
your current disc. Now go back to the Edit Screen with
F19, by pressing [F9) and the right [Amiga) key at the
same time.

!fyou press the left or right [Amiga) key while in the Edit
Screen, the same definitions will appear in the edit area.

Are you ready to go graphical? Then you're going to
enjoy the next Chapter!

101

102

Chapter 8

GRAPHICS

o graphic coordinates

o drawing lines

o drawing shapes

o colour

o solid shapes

o flashing

o rainbows

o graphical text

"Art is a lie."
(Pablo Picasso, 1958)

103

Chapter 8

GRAPHIC
C<X>RDINATES

GRAPHICS

Welcome to the artist's Chapter.

You are a computer-graphics artist! Your electronic
canvas is 320 pixels wide and 200 pixels high. Your
artist's palette can hold several pots of ink, and there are
over four thousand bottles of different colours waiting
in the art shop. So clear your canvas now with a CIs
command, and get ready to create instant computer
graphics with Easy AMOS.

Every artist wants to put the right blob of colour at the
rightpointon the canvas, tomakeupshapesand patterns.
As a computer artist, you need to know the coordinates
of each available pixel. You should already be familiar
with the idea of x,y-<:oordinates, and as long as you don't
confuse graphic coordinates with text coordinates all
will be well.

PLOT

This is the straightforward command for filling a single
pixel with whatever colour is ready to use on your
electronic brush. Plot a point now, wherever you choose
on the electronic screen, using any graphic x,y
coordinates between 0,0 and 319,199 like this:

lUi? Plot 160,100

Now give your screen a different coloured pimple. All
you have to do is set the graphic coordinates, then
specify the number of one of your paint pots, and see
what colour is in it. For example:

lUi? Plot 160,100,6

Not very exciting is it. Never mind. Try giving the
screen animated bubonic plague! Copy the next routine
exactly, and then run it. It uses a new command called
Rnd, which makes things happen at random.

Chapter 8

Drawing lines

GRAPHICS

Don't worry how that works for now, put your trust in
Easy AMOS and take it for granted that paint pots
numbered from zero to 15 are to be used for throwing
colour aU over the screen at random. Here goes:

~Curs Off : Flash Off

Do

Plot Rnd(319) ,Rnd(199) ,Rnd(15)

LoOp

Later in this Chapter, you can learn how to change the
colours in your ink pots, and use them for instant graphic
effects. As for now, there should be sixteen different
colours speckling aU over the screen in a random mess.
It would be impossible to establish what colour is sitting
at any coordinate simply by looking at the screen, so
Easy AMOS gives you a command to help.

=POINT
This is the command used to teU you the index number
of the colour occupying the x,y-coordinates. Try this
example:

~ Plot 160,100

Print "The colour is";Point (160, 100)

DRAW

Line drawing is extremely Simple. Pick two sets of
coordinates, and use them to teU Easy AMOS to Draw a
line from one To the other, like this:

~ Draw 50,50 To 250,150

If you want to draw a line from wherever the graphics
cursor is set at the moment, just give the Draw To
command foUowed by a single set of coordinates. For
example:

~ Draw To 275,175

105

Chapter 8

Line styles

lCX>

GRAPHICS

When you have done that, experiment with line drawing
anywhere on the screen, like this:

IG? Draw 10, ° To 319,199

Draw To 275,50

Draw To 0,199

Changing the style of straight lines is very simple. You
may remember that there is a way to make sure which
pixels are to be filled and which pixels are to remain
empty, using the twin or '"binary" numbers zero and one,
and thata binary number can be introduced by using the
% symbol.

SET LINE

This command tells the Amiga what style of line you
want to create, using a binary number made up of 16
"bits". So a normal line, with no gaps in it, can be
imagined as a binary number where all the bits are set to
ONEs, like this:

%1111111111111111.

But as soon as you introduce ZEROs into the pattern,
you set up a dotted line for your drawing operations.
Experiment with your own patterns, along these lines:

IG? Set Line %1100000101010011

Draw To 319,199

Draw 160,0 To 160,199

Draw 0,100 To 319,100

Chapter 8 GRAPHICS

Try this example, which draws a range of spider's webs:

~ Flash Off: Palette O,$FFF

SPIDERWEB:

Cls 0

Pen 1 : Paper 0

Locate 0,0

Input "Enter a number bet_en 5 and 50."; S

Curs Off

If S<5 or S>50 Then Goto SPIDERWEB

Cls 0

This is where the web is drawn

, using variable S from Input

For Y=O to 200 Step S

Plot O,Y

Draw To Y,200

Next Y

Locate 10,3 : Print "Press a key toNi

Locate 10,4 : Print "spin another web";

Wait Key

Goto SPIDERWEB

Thefirsttimeyou weaveyourweb,inputthenumber··5·',and
draw a dense pattern. Then try and understand why the
pattern is so expanded when you input "50". Experiment by
changing the Plot coordinates to something like:

~ Plot 100, Y

Draw To Y,150

and mput "5" again, to see how your web has been twisted.
Now use Set line to change the style of your web strands.

107

Chapter 8

Drawing
shapes

108

GRAPHICS

Here are some Easy AMOS short-cuts for drawing line
shapes on the screen. You can even use Set Line with the
first one, called Box.

BOX
draws the outline of a rectangle, from wherever you set
the coordinates of the top left-hand corner To the bottom
right-hand comer. For example:

~ Set Line %1010101010101010

Box 50,50 To 275,100

When it comes to circles and ellipses, graphic coordinates
are used in much the same way. This time, the x,y
coordinate sets the centre point around which your
shape is going to be drawn. The "radius" is the distance
from the centre of the shape to the "circumference" or
rim of the shape, and it is set by giving the number of
pixels making up that distance. Obviously, a circle only
has one radius, but an ellipse has two: one for the radius
from the centre of the ellipse to its nearest side and one
for the radius from the centre to its furthest side.

radius

Chapter 8

Setting the
graphics cursor

CIRCLE

ELLIPSE

GRAPHICS

Draw a circle now, by setling the coordinates of its
centre, followed by the length of its radius. Then draw
an ellipse in the same way, not forgetting to set the
length of both the short and the long radius. Try this
example:

~ Circle 100,100,45

Ellipse 250,90,30,70

With drawing commands, remember that if you leave
out the coordinates from where the shape is to bedrawn,
it will appear from the current cursor posi lion. You still
have to include the correct number of commas, like this:

~ Draw 0,100 To 160,100

Circle ,,45

GRLOCATE

The graphics cursor sets the starting point for drawing
operations. Gr Locate places the graphics cursor at the
x,y-coordinates you choose, in the usual way. Try out
this example:

~ X~150 : Y~lO

For R~3 To 87 Step 3

Gr Locate X,Y+R

Circle "R

Next R

100

Chapter 8

Setting
graphics areas

COLOUR

Choosing
colours

110

GRAPHICS

CLIP
This command is used to mark out an invisible
rectangular area of the screen using the usual graphic
coordinates, so that all drawing operations willbeclipped
off when they reach the boundaries of the rectangle. To
restore the normal screen display, simply use Clip again,
leaving out the coordinates. Areas that are preserved
outside the clip zone can be used for items such as
borders and control panels. To see how this works,
insert the following line at the beginning of that last Gr
Locate example, and see what effect it has on the circles:

!Iff" Clip 100,30 To 205,140

One of the best features of Easy AMOS is the way it gives
you the freedom to exploit your Amiga's superb colour
handling features. The next part of this chapter tells you
how.

So far, you have been stuck with a pre-set colour for your
ink. The next command explains how to take control
and change ink colours to your own preferences.

INK

This is the command for filling the ink pot you are using
with your choice of colour from a selection of zero to 64
colour numbers. For example:

!Iff" Ink 5

Draw to 319,199

The Ink command can also be used to set colours for
borders around shapes and whatever fills up those
shapes, and this will be explained later. Before that, you
should understand how different colours are mixed.

Chapter 8

Mixing colours

GRAPHICS

Every shade of colour displayed on a television set or a
monitor is composed of various mixtures of the same
three primary colours: Red, Green and Blue, or "RGB"
for short. There is a range of 16 strengths available for
each of the RGB levels in every colour. A zero level is
equivalent to "none" of that colour, in other words
"black", and the maximum intensity is the equivalent of
"all" of that colour.

Because there are three separate components each with
16 possible strengths, the maximum range of shades
available is 16 times 16 times 16, which equals 4096
poSSible colours!

The Amiga likes to recognise colours by their RGB
components. Unfortunately, it isn't too keen on the
normal decimal system of numbers, which we have
evolved based on the ten digits we carry around at the
end of our arms, known as our "fingers". Your computer
prefers to use a system called "hexadecimal", based on 16
digits. Of course, we haven't got 16 different numbers
to match up with this way of thinking, so we use all the
numbers we have, plus a few letters to make up the
difference. Look at this table and try to get familiar with
hexadecimals. The top line shows digits in the
hexadecimal system, "hex" for short, and the bottom line
shows the decimal equivalent.

HEX DIGIT 0 1 2 3 4 5 6 7 8 9 0 ABC D E F

DECIMAL 0 1 2 3 4 5 6 7 8 9 10111213141516

It is not difficult to take a look at what colours are sitting
in your first 16 ink pots, and find out how much Red,
Blue and Green is being used to make up each colour.

111

Chapter 8

f) I!!!,' ~

112

GRAPHICS

=COLOUR
This function takes an ink pot index number enclosed in
brackets from zero t031,and tells you what colour value
is sitting in that pot. Try and understand what this
routine is doing when you ask the Colour function to
report on a hexadecimal string of colour value. We use
Hex$ for this purpose, in the following way:

~ Curs Off : Flash Off

For C=O To 15 : Ink C

Print Hex$(Colour(C) ,3)

Circle 160,75,10+C

Next C

There should now be a list of 16 colour values in hex
code, alongside a bunch of 16 circles using those colours.
Every hex number is introduced by a dollar sign. $ is not
only used to represent a ··string·'. When used with
numbers like this, it introduces a hex number for the
Amiga to recognise. So whenever you usea hex number,
always put a $ in front of it.

Lookat the first hex value, and the innermost circle. Sure
enough, $000 means that there is no Red, no Green and
no Blue component in ink potnumberO. Itisdrawn with
black ink.

Here are some other values, which should be easy to
understand if you refer back to the hex digit! decimal
table above.

COLOUR HEX VALUE RGB COMPONENTS

Green $OFO R=O G=F B=O

White $FFF R=F G=F B=F

Violet $FOF R=F G=O B=F

Sickness $A91 R=A G=9 B=1

Chapter 8

'You can have
any colour you
want, so long
as it's black!'

(Henry Ford,
1924)

Setting several
colours

GRAPHICS

If that is clear, you are ready to mix your own coloured
ink and pour it into whatever ink pot you want. There
are 32 pots, called "colour registers" waiting on your
palette.

COLOUR
This command is used to set a new colou,r ready for use.
Follow the command with the colour index number,
then the new hex value introduced by the $ symbol, like
this: $RGB. Run this'example from Direct mode:

~ Colour O,$FFO

If you have made that last example work, colour register
zero no longer holds black ink, but bright yellow.
Experiment with mixing your own shades now, and try
loading them into different ink pots.

COLOUR BACK
This command is used to set the background colour of
the screen, that is to say, the areas of screen that are not
in use,such as theverytopand bottom. The$RGB value
is set in hex as usual, so try changing the background
colour now, like this:

~ Colour Back $666

Instead of mixing new colours, existing colours can also
be used, like this:

~ Colour Back Colour(l)

Spectacular effects can be achieved by multicolour
changes, but assigning individual colours to every paint
pot would be a tedious business. Never fear, Easy
AMOS has a suitable short cut.

113

Chapter 8

Filled shapes

114

GRAPHICS

PALETTE

'This is a much more powerful command than Colour, and it
can be used to set as many or as few colours in your artist's
palette asare needed. Your program always startsoffusing a
list of pre-programmed or "default" colours sitting in the
existing palette. Run this line now, then draw something on
the screen:

~ Palette ,$FOO

The second palette colour has changed to red, but all the other
colours retain their original settings. Now try this routine,
which changes the first five colours in the palette with a
hexadecimal poem, and displays the result on the screen. If
you don't like the colours or the poetry, feel free to change the
values!

~ Palette $FAB,$F1B,$BAD,$ODD,$BOD

Curs Off : Flash Off

For C~o To 4 : Ink C

Print Hex$(Colour(C) ,3)

Bar 50,8*C To l50,8*C+8

Next C

Thereisanewcommand in thatlastexamplecaIled Bar, which
is a good introduction to the next section. Reset your colours
now, by getting rid of any of your new Palette commands,
before you go on.

You should now be familiar with drawing basic shapes, and
setting choices of colour. The next stage explains how to
combine these skills.

PAINT

Using this command will fill any section of your screen with
a solid block of colour. All you have to do is include this
command in your program, followed by a set of coordinates
located anywhere inside the area of screen you want to paint
with the current ink colour. Try this:

Chapter 8

trff> Palette 0, $FOO

Circle 160,100,50

Paint 50,50

GRAPHICS

If that has worked properly, you have just drawn the
Japanese national flag on screen.

BAR
This isused to draw solid bars of colour by setting up the
top left-hand graphic coordinates To the bottom right
hand coordinates in the normal way, like this:

Bar 50,50 To 125,175

Shapes with many sides are called 'polygons', and Easy
AMOS lets you draw coloured shapes with as many
sides as you want, using a single command.

POLYGON

The Polygon command sets up any size and shape if you
tell it the coordinates for the beginning and end of each
one of its sides, as usual. If the first pair of graphic
coordinates is left out, then your shape will begin from
the current graphic cursor position. Try and build up
different geometric shapes, like this:

trff> Polygon To 250,150 To 135,175 To 200,75

Now fill the screen with intergalactic stalagmites by
running the next routine, using random colours,
coordinates, heights and widths of triangles. When
you've seen enough, try changing the values of the
numbers in brackets.

trff> Do

Ink Rnd(15)

Xl=Rnd (250) : Yl=Rnd (150)

H=Rnd(200) : W;Rnd (150)

Polygon Xl,Yl To Xl+w,Yl To Xl+W/2,Yl+H To Xl,Yl

Loop

115

Chapter 8

116

GRAPHICS

Type in and [Run] this example, which creates a mosaic
pattern with painted grids ranging from red through to
blue. See how it makes use of the graphic commands
Palette, Ink, Plot, Draw To and Paint:

tr:P'" Screen Open 0, 320,200, 16, Lowres

Curs Off : CIs 0 : Flash Off

Rem Type in next line as one long line

Palette $O,$FOO,$EOO,$DOO,$COO,$BOO,$AOO,

$901,$B02,$703,$604,$505,$406,

$307,$20B,$109
XA~BO

P~O

YA~20

For D~O To 140 Step 10

Ink 1

Plot D+XA,YA Draw To

Plot XA,D+YA Draw To
If P<>O

For S~O To P-l

D+XA,140+YA

140+XA,D+YA

Ink P+l

Paint(P-l)*10+5+XA,S*10+5+YA
If S<>P-l

Paint S*10+5+XA, (P-l)*10+5+YA

End If

Next S

End If

P~P+1

Wait Vbl

Screen Swap

Next D
Ink 15

Paint 0,0

Ink 0
Paint XA,YA

Chapter 8

More inking

Filling shapes

GRAPHICS

SET PAINT

This is a simple command that switches outlines on and
off for any shapes drawn with Polygon and Bar
instructions. Follow Set Paint with a value of 1, and
borders appear in the previous Ink colour. Follow it
with a zero and you are back to normal, with no borders
showing. For example:

~ Ink 0,1,2 : Set Paint 1

Bar 5,5 To 200,100

Set Paint 0 : Bar 210,75 To 310,190

Look at the three numbers that follow the Ink command
in that last example. After the number that sets the new
ink colour there are two more settings.

INK

The Ink command can also have optional settings for
paper and border colours. You don't have to set them,
as long as commas are used in the right place. The paper
colour sets a background colour that will be used for any
filling-in patterns. The border colour selects what colour
is used for any outline borders on bars and polygons.
Try using the following settings in tum for drawing
bars, and see the effect, one after the other:

Ink 3 : Rem Set ink colour

Ink ,,5 : Rem Set border outline only

Ink 0,8,2 : Rem Set ink,back,border

Ink 6,13 : Rem Set ink and background

FiIIing shapes with plain colours is all very well, but
Easy AMOS allows for a much wider choice of fiIIing
effects.

117

Chapter 8

118

GRAPHICS

SETPATIERN

This is used to select from a whole range of pattern
numbers. The normal or "default' state of affairs fills
shapes with the current ink colour, and is set with a zero,
like this:

Set Pattern 0

If Set Pattern is followed by a POSITIVE number from 1
to 34, shapes are filled from a ready-made selection of
patterns. Take a look at them now by running this
routine:

((ff'DO

For N~O To 34

Set Pattern N

Ink 0,1,2 Set Paint 1

Bar 50,50 To 150,150

Locate 0,0 Print N;

Wait 50

Next N

Loop

If Set Pattern is followed by a NEGATIVE number,
shapes are filled by an image held in a special memory
bank. These images go by the name of "Bobs', and "Bob'
images can be very complicated. So in order to use them
as a fill pattern, the Set Pattern command automatically
simplifies their colouring and their dimensions. The
whole of the next Chapter is devoted to "Bobs", so wait
until you understand them before trying Set Pattern
with a negative number. For the moment, let's take a
look at some ways of changing the appearance of
graphics.

Chapter 8

Overwriting
styles

GRAPHICS

When graphics are drawn, they nonnally get "written"
over what is already on the screen. But there are four
alternativedrawingmodesthatchangethewaygraphics
appear, and they can be used one at a time, or combined
to generate a whole range of effects.

GRWRITING

This command is used to set the various modes used for
drawing lines, shapes, filled shapes and graphical text.
There are several alternative modes which can be used
singly or combined to create dozens of different effects.

Settings are made using a "bit pattern", where the
following values give the following results:

Bit 0=0 only draws graphics using the current INK
colour.

Bit 0=1 replaces ANY existing graphics with new
graphics.

Bit 1=1 changes old graphics that OVERLAP with new
graphics.

Bit 2=1 reverses ink and paper colours creating
INVERSE VIDEO.

The normal drawing state is where new graphics
overwrite old graphics, and replace them. Like this:

JUr' Ink 2, 5 : Text 100, 80, "NORMAL TEXT"

Wait 100 : Gr Writing 1

Text 100,80, "REPLACE"

By setting the Gr Writing bit pattern to zero, only new
graphics that are set to the current INK colour will be
drawn. This allows you to merge new graphics with an
existing background. Try this example:

JUr'Ink 2,5 : Text 100,80, "NORMAL TEXT"

Wait 100 : Gr Writing 0

Text 100,80, "MERGED"

119

Chapter 8

Flashing

120

GRAPHICS

The next examples reverse an image before it is drawn,
creating INVERSE VIDEO effects. Add the following
lines to the last example to see the result.

~ Wait 100 : Gr Writing 4

Text 100,90, "STENCIL""

Wait 100 : Gr Writing 5

Text 100,100, "REVERSE"

Experiment now with your own values, and see what
effect the various overwriting techniques can provide.

Now for something flashy. You will have noticed during
your programming that colour number 3 automatically
flashes on and off. You also carne across the Flash Off
and Flash commands when you were learning about the
text cursor.

FLASH
is a command that can do much more than affect colour
number 3. When Flash is followed by the index number
of any colour, that colour will have animated flashing
every time it is used, until you command the program
otherwise. What's more, you can flash between as many
as 16 colours, and set the flash rate to any length that
pleases you. It works like this:

Flash 1,"(OAO,50)(FOF,50r

Let's decode that line of program. The colour to be
affected follows the Flash command, in this case colour
number 1. After the comma, the set of quotation marks
can contain up to 16 pairs of brackets, and inside each
pair of brackets there are two components. Each pair of
brackets represents the colour that is next on the list to be
flashed, and how long it will appear for. Colour is set in
RGB component values, like the ones in the right-hand
column of the table earlier in this chapter. Delay time is
set in 50ths of a second.

Chapter 8

RAINBOWS

GRAPHICS

So the last example has the effect of flashing colour
number one between a green value and a violet value
once every second. See if you can create some special
effects using this method, such as flashes of lightning
and starbursts. Don't forget Flash Off to prevent these
experiments affecting other parts of your programs.

The electronic canvas of a computer artist doesn't have
to be blank or boring. Imagine painting on shadows and
rainbows! The next command lets you do both.

Copy and run the following program, then get ready to
understand how it works. It could be the opening scene
of your first artistic production. Where it says "MY
NAME presents", you are welcome to insert your own
name!

~ Set Rainbow 0,1,16," (If 1, 15) "," ",""

Rainbow 0,56,1,255

Curs Off : Flash Off

Locate .12 : Centre "MY NAME presents"

Wait Key

SET RAINBOW

This command creates a sort of Venetian blind effect
which alternates light and shade and can create some
excellent rainbows. It works with these parameters, in
the following order:

Set Rainbow is followed by an identification number
for this rainbow, then a colour index number, then the
length of the colour storage table, then the "(Red
string)","(Green string)","(Blue string)'"

Look at your last example, and identify each part of the
Set Rainbow process as they are explained.

121

Chapter 8

122

GRAPHICS

The rainbow identification number can be between zero
and 3. In other words, you can set up to four different
rainbows for later use, and number them 0, 1, 2 or 3.
Your example sets rainbow number zero.

The colour index number sets the colour to be affected
by the rainbow.

Next is the colour storage table size, which can range
from 16 all the way up to 65500, with each unit ready to
hold one "scan" line of colour. If this value is less than the
actual height of your rainbow, the colour pattern gets
repeated down the screen.

Finally, the Red, Blue and Green components of the
rainbow are set up as "strings", each within their own
(brackets). Your example leaves out any reference to the
Green and Blue components, which is why your rainbow
effect is completely in the Red. The three values in
brackets represent this:

(number,step,count).

Number refers to the number oflines assigned toone
colour value. Think of it as controlling the "speed" of
the sequence.

Step is a value to be added to the colour, which
controls the change in this colour.

Count is simply the number of times this whole
process is performed.

The best way to understand all this is to change the
values in the Set Rainbow line of the example, and see
what happens.

Chapter 8 GRAPHICS

RAINBOW
Now for the command that is used to display one of your
rainbows on screen. Again, let's work through its parameters
in order of appearance. They run like this:

Rainbow number, base, vertical position, height

The rainbow number should beobvious, and refers to one of
four possible patterns created with Set Rainbow.

The base number is a sort of offset value for the first colour in
the Set Rainbow table, and it governs thecydingor repetition
of the rainbow on screen.

The vertical position isa eoordinate witha minimum value of
40, and it affects the starting point of the rainbow's display,
vertically, on the screen.

Hnally, the heightnumbersets therainbow' s vertical height in
screen "scan" lines.

It is worth knowing that only one rainbow at a time can be
displayed at a particular scan line, and theone with the lowest
identification number will normally be drawn in front of any
others.

RAINBOW DEL
This is short for rainbow delete. The Rainbow Del command
will get rid of all rainbows that have been setup. If you add a
rainbow identity number, then only that particular rainbow
will be flushed down the electronic toilet. fur example:

Rainbow Del 0

RAIN
is a very powerful rainbow instruction, because itallows you
to change the colour of any rainbow line to any value you
choose. Rainmustbefollowedbyapairofbracketscontaining
the number of the rainbow to be changed and the scan line
number that is to be affected, like this:

Rain(number,line)=colour

123

Chapter 8

"Enjoy a rainbow
without
forgetting
the forces that
made it."

(Mark Twain,
1897)

124

GRAPHICS

The next example works in the following way. Rainbow
number 1, with colour index 1, is given a colour table
length of 4097 (one entry for every colour value that will
be on the screen). The RGB values are left blank, to be set
up by the first For ... Next routine that contains the Rain
command. The second For ... NextroutineusesRainbow
to display a pattern 255 lines long, starting at scan line
40. Do ... Loop is used to repeat this process.

IW Curs Off : Centre "OVER THE RAINBOW"

Set Rainbow 1,1/4097,~~,"H,""

For L~O To 4095

Rain(l,L)~L

Next L

Do

For C~O To 4095-255 Step 4

Rainbow 1,C,40,255

Wait Vbl

Next C

Loop

The stage is fast approaching when your graphics
programming will cease to be a bunch oflittle exercises,
and you will have the confidence to start linking several
routines together to create original computer art. Many
of the techniques you can already use will playa part in
creating electronic backdrops, instruction panels, title
screens, and special effects, no matter what sort of
computer programs you are interested in. Easy AMOS
can help you release your creative talents, and if you still
think that your efforts so far don't begin to compare with
your favourite programs, think again.

Chapter 8

Converting
coordinates

GRAPHICS

The last part of this Chapter deals with some practical
information before you enter the incredible world of
animated computer graphiCS. It will be worth your
while to read through it, if you have any intention of
mixing text and graphics in your own programs.

When text and graphics need to bedisplayed at the same
time, you want to be able to relate both the text coordinates
and the graphic coordinates together. As you already
know they use two different systems, so Easy AMOS
provides instant conversion functions.

=XTEXT

=YTEXT

Supposing you want some text to hit a certain graphic
target. All you need to do is tell the commands X Text
and Y Text the graphic coordinates you are interested in,
like this:

I!? Circle 116,99,45

X=X Text(116) : Y=Y Text(99)

Locate X,Y

Print "+K

=TEXT LENGTH
Use this function to discover the graphical length of a
string of characters. This is important when different
sized fonts are involved, and you need to know exactly
how many pixels wide a string of text will be.

I!? T$="Easy AMOS"

L=Text Length(T$)

Print L

125

Chapter 8

126

GRAPHICS

=TEXTBASE

This is used in much the same way to work out the
height of the "baseline" of the current font. The baseline
is the number of pixels from the top of a character set,
down to the point where the characters sit on the screen.
Obviously, letters that have little tails on them (g, j, p, q
and y) dangle below the baseline.

~ Get Fonts : Set Font 2

Print Text Base

text base

Because graphical text fonts have various shapes and
sizes, the Print command cannot .be used to position
graphical text on screen. Once Text Base has revealed
the baseline of a font, this can be used as a graphic
coordinate.

TEXT
Is the command that prints a string of text at graphic x,y
coordinates. So your text can be printed at any pixel
posi tion on screen. Like this:

~ Text 123,123, "That's all folks"

Chapter 9

BOBS

o the Main Menu

o disc operations

o bank operations

o the grabber

o hot spots

o palette colours

o screen resolution

o animation

o drawing tools

o using Bobs

"There's a little
red faced man,
which is Bobs. "

(Rudyard Kipling,
1901)

127

Chapter 9

BLITTER
OBJECTS

The Bob Bank

1

BOBS

This is where Easy AM OS takes off and flies through the
realms of computer animation. The good news is that
you are at the controls! Anyone who has skipped
straight to this Chapter can hardly be blamed, it contains
some of the most spectacular tools in the Easy AMOS
treasure chest.

Your Amiga contains a chip that goes by the name of the
"Blitter". This can copy images to a screen at a rate of
almost one million pixels per second, which allows
highly professional moving graphics to be displayed.
Easy AMOS uses the Blitter to create moveable graphics
called "Blitter OBjects", or Bobs for short.

Bobs can be moved around the screen without affecting
any other existing graphics. They can feature up to 64
colours and there is no limit to their number, apart from
the amount of memory available. You can control them,
track them and give them special characteristics if they
collide with one another. Best of all, a Bob can be
animated to make moving cartoon characters or lumps
of exotic machinery, flying text, intergalactic phenomena,
in fact anything that your imagination can dream up.

Bobs are held in special blocks of computer memory
called "banks". Several different banks can be used, but
Memory Bank 1 is always reserved to hold your Bob
data. Onee they have been set up, you can deposit and
withdraw Bobs from any suitable bank, to use ready
made designs, adapt existing ones and best of all, you
can create your own design images.

There's a whole host of Bobs waiting to be called up on
your "Easy AMOS Tutorial" disc, so make sure that this
disc is in your disc drive and let's display a Bob now!

Chapter 9

Displaying a
BOB

Loading the
Bob Editor

BOBS

The following program loads a Bob file from your "Easy
AMOS Tutorial' disc. After removing the cursor and
stopping colour 3 from flashing, the screen's palette is
set to the palette used by the Bob, and then the screen is
cleared to display colour zero. You then position Bob
number 1 at selected x,y coordinates, using "image
number 1" from the Bob Bank. This isexplained in detail
later. Finally, the program waits for a screen "vertical
blank". Here goes:

~ Load "Easy_Examples:Bobs!Baby_AMOS.Abk'

Curs Off : Flash Off

Get Bob Palette

CIs °
Bob 1,160,130,1

Wait Vbl

Our favourite cartoon character should now bedisplayed
on screen, ready to stride through this Chapter. The
Bobs Chapter is split into two sections. The first part is
a guided tour of the Easy AMOS Bob Editor, which is an
amazing electronic tool-kit for creating, transforming
and animating Bobs, simply by selecting options from
the screen with the mouse! The second part of this
Chapter includes all the Bob commands you will need
for making the best use of your own creations in your
own programs.

The best way to understand the Bob Editor is to go right
ahead and use it. It's ready and waiting on your "Easy
AMOS Programs" disc. You can select [Bob Editor) from
the Systems Menu by pressing [Shift] and [F7] together.
Alternatively, make sure that your "Easy AMOS
Programs" disc is loaded, and select the following
program using the File Selector:

Bob_Editor . AMOS

129

Chapter 9

Setting up

130

BOBS

When you select the Bob Editor from the Systems Menu,
any program you are working on that is still in the main
editor will be saved to disc before the Bob Editor is
loaded and run automatically.

The Bob Editor is jam packed full of data. In fact it
contains so many features that they won't all fit in the
amount of memory reserved for the editing buffer if you
load the Bob Editor using the File Selector. Don't worry,
the Information Line will display a message and ask you
to press [Y)es to change the buffer size. When this
happens, simply press [Y) and then [Run) the Bob Editor.

Welcome to the Main Menu Screen of the Bob Editor.
Before you go any further, let's load some Bobs into the
Bob Editor so that you have something practical to work
on. For the rest of this Chapter, everything you need is
on the "Easy AMOS Tutorial" disc, so have it ready in
your disc drive now. For the time being, simply follow
these instructions, all will be explained in detail as you
progress through this Chapter.

Look at the line of boxed images at the top of the screen.
In the top left-hand comer is a panel that says "EASY
BOB ED". Next to that is a panel that displays a picture
of a disc drive. Click on the disc drive box with your left
mouse button, and leave the mousecursor exactly where
it is.

A new range of images should now be displayed at the
top of the screen, and next to the image of a "pointing
finger" click on the box that shows a floppy disc with an
arrow pointing to the right towards a "storage bank",
using the left mouse button.

A file selector should now appear headed 'Choosea Bob
bank". Select the folder marked "'Bobs", then load the
"Baby _AMOS.Abk" file. The Main Menu Screen will
now fill with various Bob images.

Chapter 9

The Main
Menu Screen

2

4

5

BOBS

After this happens, move your mouse pointer to
anywhere in the top line of images, and click on your
RIGHfmouse button. You are now ready to work some
small wonders, so let's get going!

The illustration shows each part of the screen marked
with a number, for easy reference. Please identify each
of the numbered zones as they are explained.

i
9

131

Chapter 9

.~

132

BOBS

1 MAJOR OPTIONS
The line of large icons across the top of the screen
represents all the major ways of importing, handling
and exporting Bobs.

2 INFORMATION LINE

This line gives a running commentary on what's
happening. It tells you how much memory is
available, reminds you what you are doing, and
provides helpful prompts while creating graphic
marvels.

3 DRAWING TOOLS
Each of the smaller icons provides one of the special
drawing tools for creating and changing the
appearance of Bobs.

4 MOUSE COLOURS
The first two double-height colour blocks show the
colours currently used by the LEFT and RIGHT
mouse buttons when drawing. The third colour
block shows the colour currently used when BOTH
mouse buttons are pressed when drawing.

5 COLOUR PALETTE
A vertical display of all the colours in the current
palette. The number of colours depends on what sort
of "resolution" you are in, and if 64 colours are
available, then colours numbered from 32 to 63 will
appear side by side of colours 0 to 31. To select a
colour, place the mouse pointer over your choice,
and click the left or right button. You can even select
a THIRD colour by pressing BOTH mouse buttons
together, and use that colour in the same way, by
pressing both buttons. Of course, if you have a
mouse with three buttons, choosing and using a
third colour is easier. Select a pair of contrasting
colours now, such as white and bright red.

Chapter 9 BOBS

6 CURRENT DISPLAY
The box near the top right of the screen reports on the
fill pattern that is ready for use. Place the mouse
pointer inside it now and run through all the fill
patterns available, using the LEFT button to move
forwards or the RIGHT button to go backwards
through the list. Thecoordinatesof the mouse pointer
are also displayed in the middle of this box when you
edit Bobs.

7 BANK DISPLAY
Bobs held in the "bank" are displayed here, underneath
their own number. Each Bob is shrunk in size so that
you can view all of it in the display. A Bob is selected
for attention by clicking the mouse pointer on it, and
its number becomes HIGHLIGHTED. Any Bob that
is currently being edited is marked with a STAR in
front of its number.

8 BANK SLIDER
Because there can be dozens of Bobs in the bank, and
there is only space to view a few of them at a time, this
slider is puIled up and down with the mouse pointer
to display other Bobs in the bank. Use it now to view
all the Bobs currently loaded.

9 SCREEN SIZER

Drag this bar to the left or right using the mouse
pointer, if you need to change the proportions of the
edit screen. The right-hand zone is the EDIT window,
the left-hand zone is the ZOOM area where you can
view your work in close-up.

10 ZOOM WINDOW

This is the area that displays a blow-up version of the
Bob. !tis provided to allow greater accuracy and ease
of use while editing your work. The zoom is norrnally
set to twice the size of the original graphics, and there
is an option to make this four times the size, which is
explained later.

133

Chapter 9

MAJOR
OPTIONS

134

BOBS

11 EDIT WINDOW
Like the Zoom Window, this is a work area. The
mouse pointer changes to a cross when inside either
theZoomWindowor the Edit Window, and drawing
operations will have the same result in both windows
no matter which one is being used.

12 VERTICAL ZOOM
When the Zoom Window is unable to show all of the
Edit Window, this slider indicates other available
areas of the Bob. By moving the slider vertically,
these areas are displayed in the Zoom Window.

13 HORIZONTAL ZOOM
This has the same function and operation as the
Vertical Zoom, and moves the display horizontally.

14 SIZER

The size of the current Bob is displayed in the
Information Line. To change the size of a Bob, lock
the mouse pointer on this gadget and drag it to a new
position. You can have Bobs as large as 320 pixelS
wide by 200 pixels high, if memory allows. Obviously,
you should keep the boundary size of Bobs as tight as
possible, to save memory.

Here is your guided tour of all the Major Options in the
Bob Editor, as they appear from left to right along the top
line of the Main Menu. Please try out each option as you
go along, by clicking the left mouse button on the icon
shown in the page margin. This will take you to the
appropriate Sub Menu.

You can get back to the Main Menu by clicking the left
mouse button on the top-left icon on the screen, or by
clicking the right mouse button anywhere along the top
line oficons. For most operations, stick to the left mouse
button, unless told otherwise. If your "Easy AMOS
Tutorial" disc is still in its drive, you are ready to begin.

Chapter 9

I~I.'" ~I

BOBS

DISC OPERATIONS

As soon as you click on this option, the original disc icon
appears at the top left-hand corner of the screen, and five
new icons are revealed along the top of the screen. From
left to right, they perform the following wonders:

Load New Bank from Disc

This prepares the Bob Editor to load a new bank of Bob
images. A series of helpful messages is provided in the
information line, and AMOS himself makes an
appearance to ensure that you make the right deeisions.
If the "Easy AMOS Tutorial" disc is ready in itsdiscdrive,
click on this icon, and then trigger the [YES) option. A
file listing will appear, with the request:

Choose a Bob bank

You will normally make your choice by clicking on the
folder of Bobs, choosing the file of Bobs that takes your
fancy and confirming your choice by clicking on the
[OK] option. The Bobs will load automatically, and you
will return to the main Edit Screen. If you have already
loaded "Baby_AMOS.Abk", simply click on [Quit) to
return to the Bob Editor. Please try to resist the temptation
of exploring icons at random, and take a little time to
follow this guided tour step by step.

Merge New Bank

This is used to insert a complete new bank of Bob images
at the position of the seleeted Bob in the current bank.
Experiment with this option, and merge a new bank of
Bobs with your existing Bobs. Use exactly the same
method as you did for loading your original choice, but
select a different file of Bob images. When you return to
the Edit Screen, click on the slider bar to the right of the
vertical block of Bobs on screen, and run it upand down
to display the current Bob images in memory. You can
see where the new bank has been merged with the
Original bank. The Colour Palette will change to the
palette used by the newly merged bank of Bob images.

135

Chapter 9

136

BOBS

Save Bank

Please DO NOT use this option while your "Easy AMOS
Examples" or "Easy AMOS Tutorial" discs are in the disc
drive! To save edited Bobs, insert a suitable WORK disc
such as the one you were asked to label "My_Programs",
and get ready to save the current bank of Bob images.
This option will display a file selector if your Bob bank
has no name. When you are satisfied, save the current
bank to the appropriate disc for later use, by following
the simple on-screen instructions.

Save As

Once again, only use a WORK disc such as
"My _Programs" when experimenting with this option.
Unlike Save Bank, when you select Save As, a file
selector will always be displayed before saving the
current bank to the appropriate disc. As with an of these
options, Easy AMOS will give you plenty of opportunity
to change your mind or [Quitl at any time during the
current process. So there is never any need to panic if
you make a mistake.

Grab Palette
When this icon isselected you won't see anything happen
immediately, but the colour palette will be au tomatically
updated to the colours ofthe new bank, when that bank
is loaded or merged. If you do not select this option, the
original palette will remain when you load or merge a
new bank. To deselect this icon, simply click on it again.

If you've been experimenting, the colours on your screen
may be looking a bit messy, so reload the Bobs in
"Baby _AMOS.Abk" with their original palette before
continuing.

We now move on t{) the second Major Option, so move
the mouse pointer to the top line, and click the right
mouse button to return to the Main Menu. Then choose
the Bob Bank Operations icon.

Chapter 9 BOBS

BANK OPERATIONS

When you select this Major Option, you take control of
all aspects of the Bob bank. The Bank icon moves to the
top-left corner of the screen, and the Major Option top
line is replaced by a series of eight new Bank icons, as
follows:

Get Bob

First, HIGHLIGHT the Bob you are interested in by
clicking the mouse pointer over its image in the Bob
display on the right-hand side of the screen. Now, click
on the Get Bob option, and the highlighted Bob appears
in the large Zoom Window and the smaller Edit Window,
ready to be worked on. It's highly probable that you
really can't wait to have a go at changing the appearance
of whatever is sitting in the edit window right now, and
there is no harm in experimenting. Please be patient
though,and take the trouble to work through this Chapter
step by step. There's much more enjoyment to be had in
knowing what you are doing. For the time being, try
clicking on the small icon showing a pair of arrows
pointing up and down, in the line of drawing tools. This
will turn the current Bob upside down! Leave it like that.

Put Bob

Once you've changed the appearance of the edited Bob
by flipping it on its head, this option puts it back into its
memory bank. It will go back to its original location, if
the loca tion has been defined. You can see the original
location by looking for the Bob with the highlighted
identification number, marked with an *.

Put.Bob To

You can select a new Bob to highlight simply by clicking
on its image. Use this option if you want to force the
edited Bob into the currently highlighted location of the
bank, and replace whatever is there. You will be asked
to confirm your actions, just to make sure.

137

Chapter 9

138

h::I+
"[I!l]" II_II

BOBS

Insert Bob

This is a fast way of inserting the Bob from the editing
window straight into the highlighted position of the
bank, without replacing the Bob that is already sitting in
that poSition. The other Bobs in the bank will then shunt
along to make room for it. Try using this option now.

Delete Bob
This will flush the highlighted Bob down the electronic
waste disposal unit, so take care when using it. As a
safety measure, Easy AMOS will not be happy about
deleting any Bob that is not displayed on screen, and
even then it will ask you to confirm your wishes. Use it
now and delete a Bob.

New

This is even more dramatic than Delete Bob, because it
gets rid of ALL the Bobs in the entire memory bank. As
usual, AMOS asks you to make sure of your actions
before you commit them. If you use it now, you will
have to load a new bank before you can continue
experimenting with Bob images.

Auto
This option is enabled and disabled by clicking the
mouse pointer over it, and popping it in and out like a
radio button. It affects the AUTO-GET feature which
automatically places data into the memory bank by
clicking twice on a stored Bob image. You may want to
use this option to avoid grabbing hold of some garbage
and automatically placing it in amongst your Bobs.

Conf
When editing Bobs, there are times when Easy AMOS
tries to be helpful by making a personal appearance in
cartoon form and asking you to confirm your actions.
For example, when you want to ERASE a Bob or use the
PUTTOoption. Ifthesereminderscauseanyannoyance,

Chapter 9

I I

BOBS

you can click on this icon to disable the Confirmation
reminder. To reactivate it, simply click on the icon again.

THE GRABBER

Once you are familiar with all the Bank operations, you
can move on to the next Major Option, the Grabber! This
grabs images from IFF pictures, that is to say, graphic
screen images saved in a special "Interchangeable File
Format" used by graphics packages like Deluxe Paint.

Grab Bob
Make sure your "Easy AMOS Tutorial" disc is ready to
load from, and select Grab Bob. This time, you will be
reminded to load an IFFfile only, and we have provided
you with a suitable picture for loading. The file requester
only appears if there is no picture currently selected.
Please select the following file now:

Easy_Tutorial: Iff/Grab_Me. Iff

When you have confirmed your choice with an [OK], the
chosen IFF picture is shown on the screen. As you move
the mouse, coordinate lines will follow your movements.
Position the mouse pointer at the top left-hand comer of
the part of the image you want to use as a Bob, then using
the LEFT button keep it held down until you have
chosen the bottom right-hand comer. If you make a
mistake, click on the RIGHT button. When you are
happy with the rectangle of graphicS to be grabbed, click
the LEFT button again. The Edit Screen now holds your
new image. There is an auto-resolution mode that is
explained later, which will ensure the best graphics
mode is used.

Put Bob
This works in the same way as the "Put Bob To" option in
the BANK menu. Itletsyou grab an image and putitinto
memory instantly, without having to wander from one
menu to another.

139

Chapter 9

140

BOBS

Load Picture

This time, when the file selector appears, you will be
reminded to save any current image in the editing area
that has not been saved to the Bob bank, then you can
select the name of a new picture to load.

Grab Palette

This isoneof those on/ off options, enabled and disabled
by a mouse click. If it is ON, the current palette will
automatically change to the palette used by the current
picture. If it is OFF, no change to the palette will be
made.

Reload Picture

This icon is linked up to the nexttwo icons, and the three
of them act like radio station selectors. In other words,
only one can be pushed in at a time, and when anyone
is activated the other two will dick off. With Reload
Picture, the graphic image gets completely erased when
you go back to the Main Menu, allowing you to create
more Bobs. This is useful if you don't have much
memory available, and a large IFF screen may be taking
up a vast chunk of it.

Pack Picture

This is also a memory saver. It takes the current screen
picture, and packs it into a memory bank using "fast
RAM", which doesn't eat up display memory. When
you leave the Grab menu for the first time, this will take
a little while to perform.

Keep Screen

This option will keep the entire screen exactly as it is,
providing you have enough memory available in • chip
RAM:

Chapter 9 BOBS

THE HOT SPOT

The next Main Option, concerns setting up any Bob "hot
spots". In most computer games and in several practical
programs, hot spots can be set up inside moving images
as coordinate reference points. When these coordinates
are recognised, they are used to trigger preset reactions.
Because Bobs can vary greatly in size, it's very useful to
be able to place a hot spot precisely. Once inside the Hot
Spot sub menu, you can go straight into the Zoom or Edit
window and use the mouse to place and set the
coordinates. Otherwiseuseoneoftheautomaticsettings,
as explained next.

Auto Off
If you click on this icon, so it looks as if it has been pushed
IN, you can use any of the hot spot presets to poSition a
hot spot by hand for the current Bob. Ifit isnot used, you
will be in Auto mode, which means that every Bob you
GET into the edit window will have a hot spot
automatically set to the last preset position. This is
useful if you want a whole range of Bobs to have their hot
spots in the same place.

Hot spot preset
There are nine icon boxes, each showing a preset hot spot
position. If the Auto option isOFF, you can select the hot
spot of the current Bob by clicking on anyone of them.
They are, in order of appearance, Top Left, Top Centre,
Top Right, Centre Left, Centre, Centre Right, Bottom
Left, Bottom Centre "nd Bottom Right. Select a preset
now, and check its setting by moving your cursor into
the Zoom or Edit window. When you want to get back
to the Main Menu, click the right mouse button in the top
line of icons, as usual.

You'll be coming across hot spots again, later in this
Chapter, along with a ready-made demo program.

141

Chapter 9

142

BOBS

PALETIE COLOURS

Here's a chance to see all that palette theory you met in
the last Chapter put into practice! Click on this Major
Option icon for the Palette, and get ready to mix some
new colours. Acolourrequesterappearsovertheediting
screen, alongside the vertical display of all the colours in
the current palette. The colour requester is laid out like
this.

Ok

IUndol

Inui.tl

ISOFOI

I
················
lit~;1

Chapter 9 BOBS

The colour requester acts like a colour mixing box. If the
box obscures the images on display in the editing area,
you can drag it around the screen by clicking on the top
bar to reveal the images. Let's look in the colour requester
box now.

On the left are the sixteen values for colour saturation,
given in hexadecimals from zero up to F. Next come
three sliding bars, one each for the Red, Green and Blue
components of each colour. On the right of the panel are
four boxes.

[OK] is triggered when you are happy with any colour
changes, and want to keep them.

[UNOO] will ignore any of your colour changes, and
return the palette to whatever it held before your latest
experiments.

[QUIT) leaves the colour requester, and ignores any
changes you may have made.

The Colour Code box, shows the value of the RGB
components of the current colour, in hexadecimals.

The Colour Panel at the bottom right of the colour
requester displays the current colour that is receiving
your attention.

To change colours in the current palette, first select one
by moving the mouse pointer over any of the colours in
the vertical palette display at the left-hand side of the
screen. Now dick inside any of the RGB slider bars and
move them up and down until you have mixed the new
colour you want. Then mix another colour, or use [OK],
[UNOO) or [QUIT], as described above.

143

Chapter 9

144

BOBS

If you alter the colour used for the "framework" outlines
used within the editing area, be careful not to merge it
with the background colour and cause confusion on
screen. If this does happen, Easy AMOS will get you out
of trouble. Although you use the left mouse button to
click on colours of your choice, if you go straight to the
vertical palette display and use the right mouse button,
you can change the colours of the edit screen directly.

The vertical palette display may show 64 colours
instead of 32 in certain modes, and you are welcome to
display colour numbers 32 to 63 in the requester and
take a look at them. But you can only change colours in
the range from zero to 31. This is because the 64 colour
mode, known as Extra Half Bright mode, takes the first
32 colours in the palette and creates 32 new colours
which are half as bright as the originals. These new
colours will only change when their"original" neighbours
are changed.

SCREEN RESOLUTIONS
Thisis the Menu inchargeofthescreencolourresolutions.
It controls the number of colours used by your Bobs,
which you may have to adjust to suit various screen
formats. To see how powerful it is, have some high
definition IFF images displayed in the Bob windows,
before you start experimenting.

Adjust
This is a very powerful option. If it is ON, any Bob you
GET from the bank will adjust the current palette to its
own resolution preference. If it is OFF, the number of
colours is unchanged. This can have one of two effects.
Either the Bob has LESS colours than your current
screen, and nothing is lost. Or the Bob has MORE
colours than the current screen, and the higher value
colours are lost. The bank will remain unchanged until

Chapter 9 BOBS

you deposit the Bob back into it. The Adjust option is
normally ON.

Hi-Res

Also an ON/OFF switch, this one selects the current
screen mode, with the maximum number of colours in
high resolution being 16. Every thing else in the program
remains unchanged, except for the colour resolution.

Number of Colours

A choice of six options, instantly selecting the number of
colours displayed on the edit screen, as follows: 2, 4, 8,
16,32 or 64.

ANIMATION

This is a great way to test animated movie sequences of
Bob images that are currently loaded. Try out the
Animation system now, using the "Baby_AMOS.Abk"
Bobs. When you click on the Animation icon in the
Major Options row, the editing screen gives way to your
very own movie animation suite! Animation is merely
the eye tricking the brain into believing that a series of
still images is continuous movement, just like the crude
"flick-art" images in the bottom comer of the left-hand
pages of this book.

145

Chapter 9

146

BOBS

Speed: 82

Ou l t

If you are using the standard European screen system,
known as PAL, there are 16 individual movie "frames" in
the "camera", tha t can take one Bob each. If you are using
the American NTSC system, there are eight frames
available. Below them is your "movie screen", showing
the individual frames animated one after the other.
Next to that is a slider bar for adjusting the Speed of
animation, from zero for "still video" up to 100 for a
"turbo" speed of 50 frames per second (PALl or 60
frames per second (NTSCl for superfast animation. The
"Quit" box is down in the bottom right-hand comer. To
the right of the animation frames, the current Bob bank
can be examined as usual, by running up and down its
slider.

Chapter 9 BOBS

To put any Bob into the animation sequence, all you
have to do is click on it and it will appear in a camera
movie frame. As soon as more than one Bob image has
been transferred, your animation sequence begins to
move, in the same order that you transferred your
images.

To take out any individual Bob from the animation
sequence, click on its movie frame image in the "camera"
sequence and it will disappear, causing all the following
frames to shunt backwards towards the beginning of the
sequence and fill the gap.

The position of the Bob animations on the "movie screen"
is changed with the mouse pointer, and its hot spot will
be automatically positioned beneath the mouse button
click.

After you QUITthe animation suite, the sequence is held
in memory. So next time you use the Animation icon,
your last sequence will come running to greet you.

To delete the sequence from memory, one of three things
must happen:

One of the animation Bobs is deleted from the memory
bank.

- A new bank is loaded.

- The original bank is erased.

QUIT

Sure enough, the white flag icon gives up the Bob editing
process and surrenders to your next bout of
programming. Just in case you have forgotten to save
anything you may want to use in the future, AMOS
appears with a timely reminder. If you called up the Bob
Editor from the Systems Menu, Easy AMOS will
automatically clear the Bob Editor from memory when
you quit, and reload any program that you were
previously editing.

147

Chapter 9

DRAWING
TOOLS

D

-
148

BOBS

But don't quit yet. There's a whole line of smaller icons
to explore, containing all of your drawing tools. This
menu line is completely independent from the Major
Options above it, and you can use these tools at any
suitable time. All of these drawing operations ONLY
effect the visible part of the Bob being edited. You are
invited to tackle them now, from left to right.

DOT PLOT
The Easy AMOS dotted plotter! Click on this icon now,
and experiment by clicking the mouse button in the
editing window to plot single pixels. Then keep the
button held down and move the mouse around at
different speeds. Now try the other mouse button, then
both buttons together to remind yourself that the top
three colours in the vertical palette display refer to the
left, right and combined mouse buttons. If your mouse
has three buttons, the third one will make use of the third
colour automatically.

LINE PLOT
This gives you a continuous solid line plot, no matter
how fast you use it.

DRAW

Before you can use this drawing tool effectively, you
have to design it yourself! First of all, set the size and
positioning of your own "line" by clicking anywhere in
the edit window, holding the mouse button down,
dragging it and then letting go. Now use your own
shape to paint and draw with. Further along the line of
drawing icons, you will see how the MODE button
changes certain drawing operations. If it is selected and
used with DRAW, then lines are drawn as soon as the
mouse button is released.

Chapter 9 BOBS

BOX

Easy! Click the mouse button to set a corner of the box,
keep the button held down while you locate the
diagonally opposite corner, then let go. One box appears,
ready to use as a brush or paste again as many times as
you like by moving the mouse and clicking a button.
Don't forget that a third colour is available for drawing
operations by using both mouse buttons together.

ELLIPSE

This works in exactly the same way as BOX, except that
ellipses don't have comers. So set the boundary points
instead. Of course, there is nothing to prevent you
drawing circles with this method.

AIR-BRUSH

One for all you street artists. Different sprays can be set
by clicking the RIGHT mouse button on this icon,
revealing a selector menu to customise your airbrush
spray can. Both the power of the air supply and the
width of your spray nozzle can be adjusted from one up
to 99, with an [OK] button to get back and start spraying.
Experiment, and see the results for yourself. If you want
to spray without customising your own air-brush, click
on the air-brush icon with the LEFT mouse button.

BAR

Set up the diagonally opposite comers of a bar in the
usual way, and then release the button to fill it with the
current colour, or selected pattern. The outline of the bar
can be toggled OFF and ON by clicking on the border
section of the Current Pattern Display window.

PAINT ROLLER or FILL

Nice and dramatic, this one. Position your paint roller
cursor anywhere inside an enclosed shape, and it will be
instantly covered with the current fill colour or pattern.
Select new patterns from the Pattern Display window.

149

Chapter 9

150

BOBS

TEXT CAPTIONS

Select this icon, click the mouse bu tton in a likely position
inside the editor window, and start typing one line of
text. Of course you can't fit much text inside a Bob,
unless it's a very wide one! Now reposition your text by
moving the mouse, and paste it in as many times as you
like. Try and create some outline and shadow effects,
using different colours.

COpy BLOCK

This is used to copy a block of graphics from one Bob to
another. Click on, hold, move and click off to open the
box in your picture, ready for pasting.

PASTE BLOCK

This grabs the previous block that you cut out, and
restores it wherever you want within the editing area.
Paste a few blocks now.

OPAQUE
All the time this option is OFF, colour zero of the block
you are editing will be transparent. If you click the
Opaque button ON, colour zero will be filled by the
colour used by the right mouse button.

CLEAR

OK, SO we all make mistakes. One of the most popular
options available: the one that clears all your current
efforts away, and leaves you with a blank editing
window. OK, SO we all make several mistakes. Use the
UNDO option to bring it all back again!

The next block of five drawing icons affects the entire
image with dramatic results.

Chapter 9 BOBS

SCROLLl

After selecting this option, grab the image in the editing
window with your mouse and scroll it anywhere you
want. Release the button to leave it in its new position.

SCROLL 2

This not only scrolls the image, but also wraps it back
around itself when you hit the borders of the editing
window.

HORIZONTAL FLIP

One click will cause an instant flip about the horizontal
axis of the Bob. Another click will flip it again. This
works equally well on blocks.

VERTICAL FLIP

This is similar to the last option, and reverses the image
about its own vertical axis.

ROTATE

This is used to rotate the whole Bob through ninety
degrees clockwise. It takes a few seconds to compute the
new image, and can be used again to keep the rotation
going all the way back to the original image.

The next pair of options is provided to help you get a
better view of your work.

GRAB

If the Bob is too large to fit inside the Edit Window, select
this icon and then use the mouse to drag the image into
view.

ZOOM

Click on this icon to double the size of the graphics in the
Zoom Window to four times the size of the original Bob.
Click again to return to an image twice the size of the
original. Don't forget that you can adjust the size of
Zoom and Edit screens by dragging the central Screen
Sizer bar to suit your needs.

151

Chapter 9

IUNDol

152

BOBS

The final group of three options each perform general
tasks.

BACKGROUND FRAMEWORK

Every click on this icon selects the next colour in the
palette for use as the framework of the edi t screen.

MODE

Presents an UP/DOWN icon that sets the mode for
certain drawing operations. UP gives Mode 1, where an
object is drawn as soon as you release a mouse button.
DOWN selects Mode 2, where you set the shape of a
brush before using it to draw with.

UNDO
This is the fail-safe icon, allowing you to scrap the last
drawing procedure, or cancel a CLEAR operation.

[SPACEBAR]

Pressing the [SpacebarJ key on your Amiga will select
the LAST drawing tool that you used. This isa shortcut,
allowing you to re-use an item without having to go
through the menu process.

MEMORY ALERTS

Because Bobs nibble away at available memory, and
because graphic screens eat up large amounts of the
stuff, a low-memory alert system is built in to the Bob
Editor. These alert messages will automatically appear
to help you. Chapter 17 is devoted to the computer's
memory, and the Memory Alerts are fully detailed
there.

Chapter 9

USING BOBS

BOBS

Mter creating all of these splendid Bobs, you'll want to
be able to use them in your own programs. The next
section deals with all the commands that help you do
just that. Once you understand how to use them, get
ready for the next Chapter, when you will be invading
the brain of a computer games designer! So if you can
drag yourself away from the Bob Editor,get ready to try
out the Easy AMOS Bob commands.

Quit the Bob Editor and save your work if you want to,
giving your edited Bob bank a new name using the [Save
As] icon. When you are satisfied, have the "Easy AMOS
Tutorial" disc in your disc drive, because you'll be using
some of its ready-made demo programs in the final part
of this Chapter.

Call up the File Selector, and open this folder:

*Bob Tutorials

There they are! Sixteen lovely ready-made demos, to
save your time and your fingertips, and if the first one
seems familiar it's because you used it at the start of this
Chapter! Load it now, examine the listing and then run
it:

Bob Tutorial01.AMOS

Drawing Bobs BOB

To draw a Bob on the current screen, first create it by
givingita number, then specify the screen x,y·<:oordinates
where you want it to appear, followed by the image
number ofthe Bob in the bank that you wantto assign for
this purpose, like the line of the last example which
reads:

Bob 1,160,130,1

153

Chapter 9

~ -
154

BOBS

That example creates Bob number one, positions it at
coordinates 160,130 and uses image number 1 from the
Bob bank. Easy isn't it.

Bob numbers normally range from zero to 63, and once
a Bob has been created you can leave out the coordinate
parameters and the Bob bank image number, and just
call it up using its own number. The parameters you
leave out will keep their original values. You can also
change its appearance or its position by including the
right number of commas but leaving out either of those
parameters. For example, to change the image of Bob
number lto the second image in the Bob bank, but keep
it at its current screen position, add these lines to your
example:

!(if' Wait 50

Bob 1",2

Wait Vbl

Did you notice that horrible flickering effect? When a
Bob moves around the screen, the graphics underneath
it are replaced at their original position. Because of
technical limitations, using a large number of Bobs on
the screen at the same time can cause an ugly flickering
effect, due to the fact that Bob images are updated at the
sametimeasthescreenimage. Don'tpanic. Easy AMOS
has a great way of solving this problem, called a "double
buffer". This creates a second invisible copy of the
screen, and all graphic operations are performed in this
invisible screen without interfering with your screen
picture at all. Let's take a look at an example of the "Bob
flicker problem" in more detail. Load the next example,
read the listing and then run it:

Bob Tutorial02.AMOS

Chapter 9

Curing screen
interference

Bob
Coordinates

BOBS

DOUBLE BUFFER
After you use this command, Easy AMOS will create an
invisible screen and use it automatically. There is nothing
to worry about, except for the fact that the Double Buffer
uses up twice the amount of screen memory. So don't
use it for too many screens. To see "the Bob flicker
problem solved", try out the next example:

Bob Tutorial03.AMOS

The next example demonstrates flicker-free Bobs moving
over background graphiCS:

Bob Tutorial04.AMOS

=XBOB(n)
=YBOB(n)
These two functions report the current coordinates of
the Bob number you are interested in. Because Bobs can
zoom across several screens, the coordinates are
measured in relation to the current screen. Take a look
a t a practical example by examining the next ready
made example in the "'Bob_Tutorials· folder on your
"Easy AMOS Tutorial" disc:

Bob TutorialOS.AMOS

After lookingat the listing and running the program, use.
your mouse to dragour floating cartoon character around
the screen, and the Bob coordinates will be displayed
automatically.

UMITBOB
Thiscommand keeps all Bobs restricted to moving inside
an invisible rectangular area of the screen, whose
coordinates are set in the usual corner To corner way. If
you follow Limit Bob with a Bob number, then only that
Bob will be restricted to the boundaries of the rectangle.

155

Chapter 9

Handling Bobs

156

BOBS

The width of the rectangle must always be wider than
the width of the Bob, and the x-coordinates are always
rounded UP to the nearest 16 pixel boundary. To keep
Bob number 1 trapped inside an area, you would use
something like this:

Limit Bob 1,0,0 To 320,100

See that in action now, by loading the next Bob example:

Bob Tutorial06.AMOS

Remember that the Bob must be called up with the Bob
command before Limit Bob is used, otherwise the limit
will have no effect. To restore your Bob's freedom to
move around the whole screen, use this command
without any coordinates, like this:

Limit Bob

Thenextfourcommandsareused to handle Bobs. When
you understand how they work individually, you can
see them working together in our next spectacular demo
program.

PASTE BOB

This copies an image from the Bob bank and draws it on
the screen immediately. Simply follow the command
with the screen coordinates where you want the image
to be pasted, then the number of the image. For example:

Paste Bob 60,50,4

GET BOB

This command is used to grab an image from the current
screen, and load it into the Bob bank. The command
must be followed by an image number to be loaded with
the grabbed image, and then the coordinates for the
corners of the rectangle that you want to make use of.

Chapter 9 BOBS

For example, if you wanted to load a block of graphics
into Bob number 1, you could use:

Get Bob 1,Xl,Yl To X2,Y2

You can select an optional screen number from which
the image is to be taken, by inserting that number in front
of the Bob number. For example, if the image you want
is on screen number 0, you could use something like:

Get Bob O,l,Xl,Yl To X2,Y2

BOB OFF

If you want to remove all Bobs from the screen, use this
command. By following it with thenumberof a particular
Bob, only that Bob will be removed. For example:

Bob Off 1

Any animations and collision routines associated with a
Bob that has been removed will no longer operate.

DEL BOB

This is used to delete one or more numbered Bobs from
the Bob bank. For example:

Del Bob 1

This would just erase Bob number 1 from the bank, but
if you want to delete Bobs 4, 5, 6and 7, for example, use
this:

Del Bob 4 To 7

When the last Bobisdeleted from a bank, the whole bank
will be removed from memory.

Load the next example program now, to see how Paste
Bob, Get Bob, Bob Off and Del Bob can be used.

Bob_Tutorial07.AMOS

157

Chapter 9

Flipping Bobs

158

BOBS

INS BOB
The Ins Bob command is used to insert a numbered Bob
into the current Bob bank, like this:

Ins Bob 63

=1 BOB
Use this function if you need to know the current image
number being used by a Bob. For example, if you are
interested in Bob number three, you could ask:

Print I Bob (3)

Make sure that the Bob has been drawn, otherwise an
"illegal function" message will be displayed.

Suppose you are designing a computer game, and
suppose you have an animated cartoon character or an
intergalactic ice-cream van moving from left to right or
from top to bottom of the screen. Among the drawing
tools in the Bob Editor, there isa pair of icons that can flip
a Bob horizontally and vertically. You may think that
you have to create a whole load of reversed Bobs to make
your animations move from right to left or from the
bottom to the top, and use up lots of precious memory.
Not so!

Easy AMOS gives you three wonderful memory-saving
functions to flip your Bobs any way you want:
horiwntally, vertically or a double mirror image. When
Bobs are flipped in this way, any hot spots are flipped as
well, so take care. Either set the original hot spots
centrally, or change them in the flipped Bobs as necessary
using the Hot Spot command, which is explained later.

Chapter 9

Detecting Bob
collisions

BOBS

=HREV
Thisis used to tell the Bob generator to display a reversed
Bob by flipping it over its own horizontal axis (the x
axis).

=VREV
Same process, different axis. The Bob can be flipped
over its own vertical axis.

=REV
This is used for a full reverse, both vertically and
horizontally.

To make any of these three functions perform their
particular flip, identify the Bob by its number, follow
that with the x,y-coordinates for where the flipped Bob
will appear, then give the appropriate Reverse
instruction, followed by the new image number in
brackets. For example:

Bob 2,121,lOO,Hrev(4)

For an instant demonstration, take a look at the next
example in the "'Bob_Tutorials' folder:

Bob Tutorial08.AMOS

When dealing with Bobs, perhaps the most important
thing your program needs to know is if or when a
collision takes place.

=BOBCOL

This is the function that checks to see if a numbered Bob
has collided with another Bob. If a collision is detected,
the value -1 (true) is given, otherwise zero (false) is
reported. So if you wanted to check on the progress of
Bob number 1, you might use this:

C~Bob Col (1)

159

Chapter 9

Setting hot
spots

160

BOBS

That would check for collisions with any other Bob, but
you can specify a range of Bobs to watch out for by
induding their numbers, like this:

C=Bob Col(1,2 To 4)

The status of these Bobs can be examined individually
by the Col function, which is explained next.

=COL

This tests the status of a Bob after a Bob Col test. You set
up an array of the Bob numbers you are interested in,
and the position of that Bob number will report back
with a -1 for a collision, or a zero for no collision. For
instance, if you wanted a report on the Bob Col example
above, you would use:

C2=Col(2) : C3=Col(3) : C4=Col(4)

A report may then be given, something like this:

C2=O, C3=O, C4=-1

meaning that Bob number 1 had collided with Bob
number 4, but Bobs 2 and 3 had avoided any collision.

Try the next ready-made example, which displays a
continuous collision report at the top of the screen when
you run the program:

Bob Tutorial09.AMOS

Collisions are searched for by referring to Bob hot spots.
You have already seen how hot spots can be set up in the
Bob editor, either freehand, or by using one of nine
preset positions. Whether a hot spot lies inside or
outside of the visible Bob graphiCS, it is always used as
the reference point for coordinate calculations. So if hot
spots have to change while a program is running, you
will need to know how to set hot spots from inside your
programs.

Chapter 9

"The Hot Spot.
Like you've
never seen. "

(John Lee
Hooker, 1990)

BOB
PRIORITIES

BOBS

HOTSPOT

To use this command for setting up a new hot spot,
simply follow it with the Bob number and the hot spot
coordinates measured from the top left-hand corner of
that Bob's image. For example:

Hot Spot 1,5,10

You can also use one of nine preset positions which
match up with those in the Bob Editor presets. They are
represented by the following values, running from the
top-left preset through to the bottom-right preset:

$00 (top left)

$01 (mid left)

$10 (top centre)

$11 (mid centre)

$20 (top right)

$21 (mid right)

$02 (bottom left) $12 (bottom centre) $22 (bottom right)

So to set the hot spot of Bob number 5 to its bottom left
hand corner, you would use this:

Hot Spot 5,$02

See the Hot Spot command in action by loading the next
example:

Bob_Tutoria110.AMOS

It is important to understand that every Bobautomatically
has a priority of importance, and that this priority is
based on the Bob's number. So a Bob carries a priority
value from zero to 63, and Easy AMOS uses this value to
decide in which order Bobs are displayed and which
Bobs barge their way in front of others when flying
around the screen.

The general rule is that a Bob with a higher priority
number will be displayed in front of one with a lower
priority number. For example, Bob 5 would cut across
Bob 4, but be obscured if Bob 6 crossed its path. So it is
clear that this priority system should always be
remembered when you number your Bobs.

161

Chapter 9

Bob control
commands

162

BOBS

Easy AM OS allows changes in the priority system to suit
your needs, by offering an alternative based on the
position of Bobs on the screen.

PRIORITY ON

PRIORITY OFF

When you use Priority On, Bobs with the HIGHEST Y
coordinates take priority on the screen. It is usually best
to set hot spots at the bottom of Bobs to exploit this
priority, and some great perspective effects can be
created. All that is needed to reset the original Bob
number priorities is to use the Priority Off command.
Get your priorities right by examining the next demo:

Bob Tutorialll.AMOS

PRIORITY REVERSE ON

PRIORITY REVERSE OFF

The Priority Reverse On command changes around the
entire priority table based on Bob numbers. Not only
does it give a lower Bob number priority over a higher
Bob number, when you use it with Priority On, it also
gives priority to a Bob with the LOWEST Y -coordinate.
As you would expect, Priority reverse Off sets the priority
system back to normal.

More experienced programmers may want to make use
of the next three commands. You'll have to understand
a bit of theory first, concerning "logicar and "physical"'
screens, and this is covered in the next Chapter. For the
time being, it's enough to know what these commands
can do, and there is a full explanation in the Glossary at
the end of this book.

BOB UPDATE

BOB UPDATE OFF

These commands are used to change the automatic
speed at which Bobs are redrawn on the screen.

Chapter 9

Drawing
modes

BOBS

BOB DRAW

Thiscan beused to redraw Bobs when certain movements
have to be synchronised.

BOB CLEAR

Thiscornrnand canbeused with the Bob Draw cornrnand,
and removes active Bobs from the screen then redraws
the background graphics beneath them.

Once you have got your Bobs on screen, you may want
to change the way they react with the rest of your
graphics. The final part of this Chapter explains how to
achieve some special effects.

SET BOB

This command is used to chang~ the Bob's drawing
mode, and it has the following parameters:

Set Bob nurnber,background,planes,mask

Let's look at those parameters one by one.

Number. This is obvious, and refers to thenumberofthe
Bob you are setting.

Background. This sets the way the graphics underneath
the Bob are redrawn. There are three values to choose
from: zero, a positive number or a negative number.

Zero automatically replaees the old background image
when the Bob moves on. This gives a smooth animation
effect.

A positive number, such as 1, causes the original
background 'graphics to be forgotten and replaced by a
solid block of the background colour. This is much faster
than the usual drawing method, and can be used for
moving Bobs across areas such as plain blue sky.

A regative number, such as -1, turns off the redrawing
proeess, and allows you to fill the old graphic image with

. special colours or patterns.

163

Chapter 9

164

BOBS

Planes. This takes the fonn of a 'bit-map" which consists
of a "binary' number, where each digit represents one
plane of the screen, and each plane represents one bit of
the final colour displayed on the screen. Normally, a
Bob is drawn in all of the bit planes, with a pattern of
%111111. By changing some of these bits from ones to
zeros, selected colours are left out and this will generate
various special effects.

Mask. Again, this is a bit pattern. All you need to know
for now is that nonnally there are two options. If the Bob
is to be used wi th a mask, use this:

%11100010

If the Bob is to be used with NO mask set, then use this:

%11001010

It is best to use Set Bob BEFORE displaying Bobs on the
screen. The following example would set Bob number
1 moving across the original screen colours, with no
mask set:

Set Bob 1,0,%111111,%11001010

Take a look at the next set of examples in the
"'Bob_Tutorials' folder on your "Easy AMOS Tutorial'
disc:

Bob_Tutoria112.AMOS

The background graphics in that demonstration are not
replaced where the upper Bob moves, while the lower
Bob is left in its normal mode and the graphics are
redrawn.

For a detailed demonstration of the plane parameter, try
the next example:

Bob_Tutoria113.AMOS

Chapter 9

Bob masks

"A mask tells
us more than
a face."

(Oscar Wilde,
1891)

BOBS

Similarly, the following example displays some effects
created with the mask parameter, with their titles and bit
pattemsdisplayed at the top of the screen when you run
the program:

Bob_Tutorial14.AMOS

GET BOB PALETTE
This command is used to load the whole colour palette
used for your Bobs into the current screen. A mask can
be added if you like, which wi11load a selection of these
colours only. Each individual colour is represented by
one "bit" of the mask set to a zero for OFF and a one for
ON. Colours run from right to left, so colour zero is
represented by the bit at the right-hand end of the mask,
colour 1 is the second from the right, and so on. Supposing
there are 16colours in your Bob palette. You would copy
the first four colours like this:

Get Bob Palette %0000000000001111

Have a look at a ready-made demonstration using Get
Bob Palette by trying the next example in the
"'Bob_Tutorials" folder:

Bob_Tutorial1S.AMOS

NO MASK
A "mask" means that the background colour (colour
zero) around your Bob is made transparent, so that the
screen graphics show through. The mask is also used by
certain collision detection routines. A mask is
automatically set up for every Bob, and the No Mask
command takes this mask away, so the entire Bob image
is drawn on the screen, including its original background
colour and any other graphicS in colour zero. To remove
a mask, simply use this command followed by the Bob
image you are interested in, like this:

No Mask 1

165

Chapter 9

"Urn, Bob,
Is that all? "
(Fifi Geldof, 1986)

166

BOBS

Load the following example for a demonstration:

Bob_Tutorial16.AMOS

NEVER remove a mask from a Bob while it is on screen,
or you'll scramble its image. Use the Bob Off command
first. We will now bob off to the next Chapter, and
explain the mysteries of the screen!

Chapter 10

UNDERSTANDING
SCREENS

o screen numbers

o screen resolution

o defining a screen

o IFF screens

o hiding and showing screens

o screen priority

o moving screens

o converting screen coordinates

"And the Lord
said, Amos, what
seest thou?"

(Old Testament,
Amos 7,8)

167

Chapter 10

Easy AMOS
screens

168

UNDERSTANDING SCREENS

Think of your television set or monitor asa glass window,
through which you can view whatever Easy AMOS is
displaying on its own "screen". The "screen" used to
show Easy AMOS images is not the same as your TV
display, because your Easy AMOS screen can be changed
in all sorts of ways, while the glass window of your TV
set remains fixed.

So far, you've learned how Easy AMOS can show text,
graphics and special effects, as well as import spectacular
graphic pictures. Up to now, everything has been
displayed on a single Easy AMOS "screen" that appears
in the glass window display of your TV set. To help you
understand all the ideas involved with screens and see
the theory put into practice, we've provided another
batch of ready-made example programs on your "Easy
AMOS Tutorial" disc. You can find them in the folder
named:

*Screen Tutorials

Imagine a computerised game of football, where the
playing area is represented by a screen. This screen
could use a plain green background colour with the
pitch marked out in white, or it could use a detailed
multi-coloured background image, like the "IFF' pictures
explained in the last Chapter. Now imagine your Bobs
are used to represent the football players, and that the
Bob palette is set up for the various coloured kits worn
by the players.

The good news is that you are not restricted to playing
on your home pitch, because· there are other screens
available for you to use!

Chapter 10

The default
screen

Additional
screens

Screen
resolution

DEFINING A
SCREEN

UNDERSTANDING SCREENS

When you run an Easy AMOS program, a screen area is
automatically set up to display the results of your work.
We call this the "default screen", and it's the Easy AMOS
screen you've been using since you first started learning
and experimenting. The default screen is given an
identity number known as screen zero. It is 320 pixels
wide, ZOO pixels high and it can display 16 different
colours.

Apart from the default screen, seven more screens can be
set up and used for Easy AMOS programs, and each new
screen is given an identity number from 1 to 7. When a
new screen is set up, it has to be "opened", and this is
done by giving it a number, followed by its width, its
height, the number of colours to be used and finally the
size of the little dots of colour across the screen called
pixels. You will open some new screens a little later on.

Until now, you have been looking at a screen that is 320
pixels wide, but this "resolution" can be doubled to 640
pixels across the screen. When the screen is 320 pixels
wide it is in "low resolution" or "Lowres" for short. If this
is changed to 640 pixels wide, the screen is in "high
resolution H 1 known as "Hires",

SCREEN OPEN

You are now ready to "open" additional screens, using
the Screen Open command followed by these parameters:

Screen Open number, width, height, cOlours,mode

Let's look at each parameter one by one.

Number is the identification number of the new screen,
ranging from 0 to 7. If a screen with this number already
exists, it will be scrapped and replaced by this new
screen.

169

Chapter 10

170

UNDERSTANDING SCREENS

Width sets up the width of the new screen in pixels.
There is nothing stopping you opening a screen that is
wider than the phySical limit of the television or monitor
display, and extra-wide screens can be manipulated
with a Screen Offset command.

Height holds the number of pixels that make up the
height of the screen. Like the width, this can be larger
than the visible screen height, and scrolled into view.

Colours sets the number of colours to be used for the
new screen. The choice for the number of colours that
can be selected is 2, 4, 8, 16 or 32. (How to make use of
even more colours is explained in the next Chapter).

Mode is your choice of the width of the pixel points on
the screen. Lowres is the normal status, allowing 320
pixels to be displayed across the screen. Hires hal ves the
width of each pixel and so allows 640 to be displayed.

When the default screen is automatically opened, screen
zero is equivalent to this:

Screen Open O,320,200,16,Lowres

To open screen number 1 as an oversize high-resolution
screen with eight colours, for example, you would use
something like this:

Screen Open 1,600,400,8,Hires

Here is a little routine that opens all eight available
screens for you to view. Try it out now:

Chapter 10

IFF screens

UNDERSTANDING SCREENS

IrY' Curs Off : Cis 13 : Paper 13

Print : Centre "Hello, I am SCREEN 0"

For S~l To 7

Screen Open S,320,20,16,Lowres

Curs Off : Cis S+2 : Paper S+2

Centre "And I am SCREEN"+Str$ (S)

Screen Display 8,,50+8*25,,8

Next S

SCREEN CLOSE

This is the command that erases a numbered screen, and
frees up the memory it was using for the rest of your
programming needs. To get rid of screen number 1, for
instance, add this line to the end of the last example:

IrY' Wait 50 : Screen Close 1

DEFAULT

To close all currently opened screens and restore the
display back to its original setting, use the Default
command. Add another line to your last example, and
see the result:

IrY' Wait 50 : Default

In Chapter 9, you carne across pictures saved in "IFF"
format and learned how to use them for grabbing Bob
images. IFF images can also be loaded directly into your
programs.

LOAD IFF

To load an IFF screen from a disc to your current screen,
make sure that your "Easy AMOS Tutorial" disc is ready
in the disc drive and give the command, followed by the
IFF filename. Remember to give a Flash Off command
too, to stop unwanted flash effects:

171

Chapter 10

172

UNDERSTANDING SCREENS

I(j;? Flash Off

Load Iff"Easy_ Tutorial : Iff/Grab_Me. Iff"

If you want to load the picture to any other screen,
simply include the number of that screen after the IFF
filename. You would load the picture to Screen 1 like
this:

I(j;? Flash Off

Load Iff "Easy_Tutorial:Iff/Grab_Me.Iff"',l

SAVE IFF

Use this command to save the current screen as an IFF
picture file onto a disc. Easy AMOS automatically saves
all the screen settings along with the picture, so that
when you load this file again it appears in its original
state, including any offsets and instructions for "hiding"
and "showing" the screen. Use the command, and give
the current picture a filename, like this:

Save Iff "My_Programs: Iff/Picture_Narre. Iff"

To save precious disc space, Easy AMOS will compress
the data that makes up your IFF picture. If you prefer to
save the picture as it is, without using this standard
compression system, then you have to add a little "flag"
after your filename. If this flag has a value of 0, the
screen will not be compressed, for example:

Save Iff ''Myyrograms:Iff/Picture_Narre.Iff"',°

The Save Iff command will work with any screen.

Chapter 10

Hiding and
showing
screens

Screen priority

UNDERSTANDING SCREENS

So far, the only command you have used for hiding a
screen display is the one that clears a screen by erasing
it, which is the Cis instruction.

SCREEN HIDE

SCREENSHOW

To remove the current screen from view, the Screen
Hide command is used to whisk it away. It can then be
restored using the Screen Show command like this:

~ Print "THE CURRENT SCREEN" : Wait 100

Screen Hide : Wait Key

Screen Show

You can temporarily hide any screen you like by including
its index number after the command. For example:

Screen Hide 1

The screen can then be revealed with a request to show
it, like this:

Screen Show 1

Because screens can be different sizes, and because they
can be displayed at different positions on the TV by
offsetting or overlapping them, and because there can be
up te eight electronic screens queuing up one in front of
the other, you need a way of instantly kicking anyone of
those screens to the front of the display, in other words,
giving it priority.

SCREEN TO FRONT

This command moves the numbered screen of your
choice to the front of the display queue. For an instant
example, open the "'Screen Tutorials" folder on your
"Easy AMOS Tutorial" disc and load the foil owing demo:

173

Chapter 10

174

UNDERSTANDING SCREENS

Screen TutorialOl.AMOS

If the screen number is left out after a Screen To Front
command, then the current screen will be brought to the
front, otherwise type in and enter the number of any
screen you like when you tryout the last example.

SCREEN TO BACK

Use this instruction to move a screen to the background
of your display. If another screen is already there, it will
be displayed in front of the screen you select. Again, if
you omit a screen number after the Screen To Back
command, the current screen will be relegated to the
back of the display queue. Get rid of any new screens
now by [Newling the last example, and try this:

~ Centre "Hello Again, Screen 0 here"

Wait 200

Screen Open 1,320,200,2,Lowres

Centre "Excuse me, make way for Screen 1"

Wait 200 : Screen. To Front 0

Screen 0

Wait 200 Screen To Back

SCREEN

This is the command that allows you to direct ALL
graphical and text operations to the screen number of
your choice, like this:

~ Screen open 2,320,32,16,Lowres

Screen Display 2"130,,

Screen 0

Plot 0,0 Draw To 320,200

Chapter 10

MOVING
SCREENS

UNDERSTANDING SCREENS

Of course, if the screen you choose is outside of the
current display area, or is currently hidden, there will be
no visible effect. But the graphics will be drawn in
memory, waiting to be displayed whenever that screen
comes into view or comes out of hiding after a Screen
Show command.

=SCREEN
Use this function to find out the number of the screen
that's currently active, whether or not it is visible:

S=Screen

Once you have set up a screen with Screen Open, it can
be positioned and moved anywhere you like on the
television display. This means that screens can be made
to bounce, slip, slide, flip over, sink out of Sight, and
behave in all sorts of odd ways. This also means that
screens can overlap, or be displayed alongside one
another, and it is not difficult to understand that several
different screen modes can be shown at once in separate
areas of the display.

SCREEN DISPLAY
To position a screen, the Screen Display command is
used, followed by these familiar parameters:

Screen Display number, x, y, width, height

Let's examine the parameters one at a time.

Number refers to the number of the screen from 0 to 7.

Thex,y-coordinates are given as "hardware" coordinates,
which refer to physical positions on the television screen,
not the area used by Easy AMOS screens. These set the
poSition from which your Easy AMOS screen will be
displayed on the TV screen.

175

Chapter 10

176

UNDERSTANDING SCREENS

X coordinates can range from 0 to 448, and they are
automatically rounded down to the nearest 16-pixel
boundary. Only the positions between coordinates 112
and 448 are actually visible on the TV screen, so avoid x
coordinates below 112.

Y coordinates can range between 0 and 312, but because
every TV setdisplays a s1ightlydifferent visible area, it' s
sensible to keep your range between 30 and 300. A small
amount of experimenting will reveal what suits your
system.

Width sets the width of your screen in pixels, starting
from the top left-hand comer of the display. Screen
width will also be rounded down to the nearest 16
pixels, and if the width is lower than the original setting,
only a part of your image will be shown.

Height is used to set the height of your screen in the
same way.

Apart from the screen number, any of the other
parameters can be left out provided that the commas are
kept in the right places. If parameters are omitted, then
the default settings will automatically apply. For
example, to display screen zero and keep its original
height and width, you could use this:

Screen Display 0,112,40"

Onlyonescreenatatimecanbeshownoneachhorizontal
line of the display, but several screens can be put on top
of one another. If screens are placed next to each other,
in other words if they are sewn together to make a
continuous display, there is one line of pixels where the
screens meet that plays" dead". You can see the effect by
moving your mouse pointer now between the editor
window and the menu line, where a line of "dead" pixels
occurs.

Chapter 10 UNDERSTANDING SCREENS

One way of getting over this "dead" area is to create an
extra-large screen that is biggerthan the TV display,and
then move the visible display area around inside its
boundaries. When extra-large screens are used, you set
the area to be viewed using the Screen Offset command.

SCREEN OFFSET

Look at the diagram below, where the area of the visible
screen is shown asa sort of "port-hole" 320 pixels wide by
200pixels high, inside a much larger Easy AMOS screen.
Of course, you can make the port-hole smaller if you
prefer, using the Screen Display command.

offset
y

x
(0,0)

TV SCREEN

(320,200)

Easy AMOS Screen

The Screen Offset command is followed by the number
of the screen to be displayed, then the x,y-coordinates of
the "offset" which is the point where the top left-hand
corner of the visible display is to start, measured from
the top left-hand corner of your extra-large screen. For
example:

Screen Offset 1,200,200

177

Chapter 10

"A wide screen
makes a picture
twice as bad. "

(Sam Goldwyn,
1953)

Converting
coordinates

178

UNDERSTANDING SCREENS

For a ready-made example using Screen Display and
Screen Offset, look through the listing of our next demo
program after loading:

Screen Tutorial02.AMOS

The visible area can be moved around the extra-large
screen by changing the offset coordinates, and some
very smooth scrolling effects are created like this. These
can be used for background graphics in leisure programs,
as well as more serious applications like geographic
maps or star constellations.

If you are not quite sureaboutthe"hardwarecoordinates"
used with the Screen Display command, don't worry.
Easy AMOS provides a full set of functions that convert
between screen coordinates and hardware coordinates.

=XSCREEN

=YSCREEN

These functions convert a screen coordinate into a
hardware coordinate. Try this:

([ff" Do

Print At (0, 0) ; "Mouse Hardware X coord.="

Print At (0, 1) iX Mouse;"

Print At (0, 4) ;"Mouse Software X coord.="

Print At(0,5);X Screen(X Mouse);" "

Loop

=XHARD

=YHARD

This pair of functions work in exactly the same way, and
are used to convert screen coordinates into hardware
coordinates. Type in the next example, and make sure

Chapter 10 UNDERSTANDING SCREENS

the mouse pointer is in the middle of the screen before
you [Run] it.

X Mouse~X Hard(O)

y Mouse~Y Hard(O)

That routine will force the mouse pointer "home" to
screen coordinates 0,0 (the top-left comer).

Now that you understand what Easy AMOS screens are,
how about using them to give your own programs the
professional touch. The next Chapter is packed full of
practical ideas, and your "Easy AMOS Tutorial" disc
provides all the ready-made examples to demonstrate
their use.

179

?

180

Chapter 11

USING SCREENS

o switching screens

o copying screens

o screen colours

o fade effects

o zooming

o screen zones

o screen blocks

o compacting screen memory

o EHBmode

o HAMmode

"[make full
use of the
silver screen,
especially when
I'm drying out."

(W.e. Fields, 1937)

~
((

181

Chapter 11

SWITCHING
SCREENS

182

USING SCREENS

This is where the Easy AMOS screens come alive. Have
the "'Screen Tutorials" folder opened on your "Easy
AMOS Tutorial" disc, and get ready to make the screen
commands work for a living.

When you flick the cartoon panels down in the left-hand
corner of this book, and when you use the animation
tools in the Bob Editor, you can understand that moving
images don't move at all. Graphical movement is an
illusion created by a fast sequence of still pictures.
Television screens don't display moving images either.
They fool the eye and the brain by updating still images
on the screen, fifty times a second.

In order to create really smooth moving graphics, your
computer has to complete all new drawingoperationsin
less than one fiftieth of a second. So if your program
can't achieve this, animated graphics will suffer from an
ugly little flicker. Easy AMOS solves this problem by
using a technique that switches between screens during
drawing operations.

This is how it works. Let's call the actual area where
images are displayed the "physical screen". Now imagine
that thereisa second screen which is completely invisible
to the eye, and it's where new drawing operations get
done. We'll call that the "logical screen"

Flicker-free movement is achieved by switching between
the physical screen and logical screen. The physical
screen is displayed as usual, then once the new drawing
has been completed on the logical screen, they are
swapped over. The old physical screen now becomes
the newlogicai screen, and isused to receive the drawing
operations that will make up the next picture. This
whole process is automatic when using the Double
Buffer command that you came across in Chapter 9.

Chapter 11

Synchronising
the screen

USING SCREENS

Easy AMOS provides a group of four functions that can
be used to give information about the physical and
logical screens. You don't have to understand how they
work for now. PHYSIC and LOGIC are used to find the
identification numbers of the physical and logical screens,
whereas PHYBASE and LOGBASE reveal the "address"
in the computer's memory of the "bit-planes" of phYSical
and logical screens. Advanced users can look these
functions up in the Glossary.

SCREEN SWAP
This is the command that swaps over the physical and
logical screens, so that the display is instantly switched
between the two of them. You can try a ready-made
example in a moment, but you need to understand one
more bit of theory first.

It has already been explained that the image on your
screen is updated fifty times every second. Every fiftieth
of a second, an image is drawn by an "electron beam"
scanning across every line of the screen at incredibly
high speed, until itreaches the bottom right-hand comer,
at which point the beam switches off and jumps back to
the top left-hand comer to start all over again. The
period between the completion of a screen and the
beginning of the next one is knows as the "vertical blank"
period, or VBL for short, and this is when Easy AMOS
leaps in to perform important jobs like moving Bobs and
swapping screens.

Although a fiftieth of a second seems a very short period
to human beings, Easy AMOS thinks of it as a huge
waste of time and is eager to get on with any tasks that
need doing. This means that your programs could get
out of synchronisation with what is actually happening
on screen, so Easy AMOS has to be told to wait for the
next vertical blank period sometimes, in order to keep in
step.

183

Chapter 11

• ---
184

USING SCREENS

WAITVBL

This simple command can be included in your programs
to achieve perfect screen synchronisation, and it's
especially useful after a Screen Swap. See it in action
now, by loading this example from the
···Screen_Tutorials" folder:

Screen_Tutorial03.AMOS

AUTOBACK

You may have noticed a new keyword in the listing of
that last example. The Autoback command is used to set
one of three automatic screen copying modes, depending
on what mode number it's followed by. Autoback can
be used anywhere in your Easy AMOS programs, to
achieve the following results:

Autoback 0

This turns off the Autoback system, and sendsall drawing
operations straight to the LOGICAL screen as fast as
possible. It can be used where you wantto redraw large
chunks of a background screen over and over again.
This allows you to perform Bob collision detection
routines at regular intervals, without destroying the
overall quality of animation effects.

Autoback 1

In this mode, each graphical operation will be performed
in BOTH the logical and physical screens, without taking
into account the position of your Bobs at all. This means
you should only use this mode for drawing OUTSIDE
the areas where Bobs may be active, and it's ideal for
sections like control panels and hi-score tables, which
need to be continually updated during a computer
game .

Chapter 11

COPYING
SCREENS

USING SCREENS

Autoback 2

ThisAutobackmode(whichisthedefaultmode)automatically
rombinesalldrawingoperationwithBobupdates. A1lscreen
updates are perfonned once for the LOGICAL screen and
then once again for the PHYSICAL screen. This means that
anythingdrawnonthebackgroundscreenisdisplayeddirectly
undemeathyourBobs. Theobviousresult of using this mode
isthatyourgraphicswilltakeatleasttwiceaslongtobedrawn,
becausetheprograrn will grind toahaltforat least two vertical
blanks each time something is output to the screen!

Any rectangular part of a screen can be ropied and moved
almost instantly. Itcan beropied ontothecurrentscreen orany
other screen, time and time again.

SCREEN COpy

Screen Copy is the most important screen rommand of all It
can be used to achievedassic screen techniquesJike"wiping"
from one screen to another, as well as providing all sorts of
special effects.

Atitssimplestlevel,Screen Copyropiesonescreen toanother,
like this:

Screen Copy Source To destination

Source is the screen number that holds the SOURCE of the
image to be copied. This can either be a standard screen
number or the number of a logical or physical screen, created
using the Logic or Physic rommands.

Destinationholds the DESTINATION screen number ,which
is where the image is copied to.

Draw some graphics on screen number zero now, so that you
can see the results of the Screen Copy process. First define an
area of the screen to be copied, bysettingthe coordinates of its
top left-hand and bottom right-hand coordinates, as usual.
Then give the position of its new location by setting the new
top left-hand coordinates on the current screen. Forexample:

185

Chapter 11

186

USING SCREENS

~Circle 50,50,10 : Wait 100

Screen Copy 0,20,20,70,70 To 0,100,100

Therearenolirnitstothesettlngsforyourcoordinates,andany
partsof an image that fall outside of the current visible screen
will be chopped off.

For an instant demo, load up this program from the ''Screen
Tutorials' folder on your "Easy AMOS Tutorial" Disc:

Screen Tutorial04.AMOS

Whengraphicsarecopied and arriveat their destination, they
normally overwrite anything that is already displayed there.
By adding an optional 'blitter mode" after the destination
coordinates, you can change the way in which the new
graphicscombinewithanyoriginalgraphics. In fact there are
255 possible modes, but don't panic. Hereisalistoffiveofthe
mostcommonmodes,a1ongwiththeirbinarybit-mapPllterns.

Mode Bit-pattern Effect

REPLACE % 11 000000 Replace destination

INVERT

graphics with a copy of the
source image.

%00110000 Repl~ce destination
graphics with an inverse
video image of the source.

AND % 1 ()()()()()()O Combine togetherthe
source and destination
images.

OR %11100000 Overlapsourceand
destination images.

Exclude OR %01100000 Overlap inverse source with
normal destination image.

If that sounds like mumbo-jumbo, don't worry. Load
the next ready-made example, and take a look through
its listing:

Screen_Tutorial05.AMOS

Chapter 11

Cloning a
screen ,

USING SCREENS

Now [Run] the program to see Screen Copy in action,
using each of those masks. After the Bob of our cartoon
character has been loaded, it will appear in the top-left
comer of your screen. Use your mouse pointer to copy
the Bob wherever you like with a single click of the left
mouse button. Now keep the button held down and
move your mouse pointer around the screen to see the
full potential of Screen Copy When you've seen enough,
press any key to call up the next mask, and repeat the
process. Impressive, isn't it.

SCREEN CLONE

To create an identical copy of the current screen, and
assign the "clone" to the screen number of your choice,
use this command followed by the destination screen
number. Try this example for a multi-cloned screen:

~ Screen Open O,320,20,4,Lowres

Flash Off

Screen Display 0"70,,

For S=l To 7

Screen Clone S

Screen Display 8"8*20+70,,

Next S

Print "Start typing>

Do

A$=Inkey$

If A$<>"" Then Print A$;

Loop

187

Chapter 11

Screen COiOUIS

188

USING SCREENS

Screen Cloning is an ideal technique in computer games
for two players, with each player having half of the
visible display area. There's a working example of this
on your "Easy AMOS Examples" disc, which you can
examine at your leisure:

Tricycle_Race.AMOS

Your clone uses the same memory area as the original
screen, and will be displayed at the same place as the
origina\. You can use any of the usual screen operations
with the clone, such as Screen Display and Screen Offset.
But because there is only one copy of the original screen
data in memory, it's impossible to use the Screen
command with the cloned copy.

GETPALETIE

This command copies the colours from a numbered
screen and loads them into the current screen. The next
instant demo on your "Easy AMOS Tutorial" disc
demonstrates this, so look at the listing to see how Get
Palette sets the palette of screen 1 to that of screen 0
before you [Run] the program:

Screen Tutorial06.AMOS

This is useful when data is being moved from one screen
to another with a Screen Copy command, and you need
to share the same colour settings for both screens. An
optional "mask" can be added after the screen number,
which will only let selected colours be loaded. Please see
the Get Bob Palette command in Chapter 9 for full details
of how to create a "mask", or refresh your memory by
looking atthe masks in "Screen_TutoriaIOS.AMOS" again.

Chapter 11

FADE
EFFECTS

USING SCREENS

When the image on one screen dissolves and melts into
the image of another screen, the effect is called a "fade".
Easy AMOS lets you produce some superb fade effects,
and we've supplied you with two of our ready-made
demos to prove it

APPEAR
This command creates a fade between two pictures.
Choose the number of the source screen where the
picture comes from, then the number of the destination
screen whose picture it fades into. Advanced
programmers can use the Logic and Physic functions
instead of screen numbers. Then choose what sort of
fade effect you want, by setting a value that ranges
between the number of every pixel on the screen all the
way down to one. The next demo program shows a
simple but very effective fade, using Appear:

Screen Tutorial07.AMOS

Normally the Appear command will affect the whole of
the screen area, but this can be changed so that only part
of the screen is faded. All screens are drawn from top to
bottom, so you can set the area to be affected with the
fade by adding the number of pixelS of that area, like
this:

IJ::j? Load "Easy_Tutorial : Bobs/Baby_AMOS .Abk"

Flash Off : Get Bob Palette

Paste Bob 100,0,1

Wait 100

Screen Open 1,320,90,16,Lowres

Flash Off : Get Bob Palette

Appear ° To 1,1,13900

189

Chapter 11

"Where's the
cheek
that does not
fi d ?" a e.
(John Keats, 1818)

190

USING SCREENS

That would fade the top part of the default screen into
screen 1. For something much simpler followed by
something much more spectacular, read on

A completely different set of fade effects can be created
using colours instead of pictures.

FADE

The classic "fade to black" movie effect takes the current
palette and gradually fades their values to zero. Set the
speed of the fade by choosing the number of vertical
blank periods between each colour change. Try this
now:

~ Flash Off : Curs Off

Centre "GOOD NIGHT"

Fade 5

It is sensible to wait until the fade has ended before going
on to the next program instruction,and you can calculate
the length of the wait with this formula:

wait = fade speed * 15

So the last example is sure to work with the rest of your
program if the third line is changed to this:

~ Fade 5 : Wait 75

By adding a list of colour values the fade effect will
generate a new palette, and it is used like this:

~ Flash Off : Curs Off

Centre "RED SKY AT NIGHT"

Fade 5,$lOO,$FOO,$300

Chapter 11 USING SCREENS

You can set up any number of new colours like this,
depending on the maximum number allowed in your
current graphics mode. Any settings that you leave out
will leave those colours completely unchanged by the
fade,aslongasyouincludetherightnumberofcommas.
For example:

Fade 5"$100,,,$200,$300

There is an even more powerful use of the Fade command,
which takes the palette from another screen and fades it into
the colours of the current screen. Youse! up the speed in the
same way as before, and then add the number of the screen
whose palette is to be accessed. By using a negative number
instead of a screen number, the palette from the Bob bank will
be loaded during the fade.

This next ready-made example will knock your socks off! It
was written in less than an hour by Richard Vanner, and the
AuthorofthisManuaimustconfessthatRichardisresponsible
for all the best demos in the Bobs and Screens Chapters. Get
your sunglasses ready and enjoy this one:

Screen Tutorial08.AMOS

There isone more pararneteryou can add if you like,and this
creates a mask that allows only certain colours to be faded in.
The maskisa bit-pattern from Oto 15, and any bit that is set to
1 will be affected by a colour change. For example:

I&" Load "Easy_Tutorial: Bobs!Baby_ AMOS. Abk"

Screen Open 1,320,90,16,Lowres

Flash Off

Get Bob Palette

Paste Bob 100,0,1

Wait 100

Fade 1 To 0,%1111000011001010

191

Chapter 11

ZOOMING

SCREEN
ZONES

192

USING SCREENS

One of the most spectacular screen effects is also one of
the simplest.

ZOOM
This command takes a rectangular block of graphics,
shrinks it or magnifies it and then deposits the new
image wherever you want. Follow the Zoom instruction
with the number of the screen from where the image will
be grabbed, then include the coordinates of the image
with the top left-hand coordinates followed by the bottom
right-hand coordinates, next specify the number of the
destination screen where the resized graphics are going
to end up and finally give the new comer-to-comer
coordinates of the zoomed image. This example takes
an image from screen zero, changes its width and then
deposits it on screen number 1. After checking the
listing, [Run) the program, and then keep pressing a key
to stretch our cartoon character to his limits:

Screen Tutorial09.AMOS

The zoom effect depends entirely on the sizes of your
source and destination rectangles, and because Easy
AMOS will automatically resize these images, you can
stretch them, squash them or zoom them in proportion
to one another as you please.

Rectangular chunks of screens can be turned into special
numbered "zones". These act as detection areas, and
they are very useful in both practical programs and
computer games. For example, they can be used to
check on the activities of a Bob in a part of the screen, to
detect if it has entered or left the area, or collided with
another Bob. They can also be used to set up control
panels and dialogue boxes, with individual zones
representing buttons, switches and triggers for all sorts
of options.

Chapter 11 USING SCREENS

The only limit to the number of these detection zones is
the amount of available memory, so you could create
hundreds of them if necessary. Before screen zones can
be set, the right amount of memory has to be reserved for
their use.

RESERVE ZONE

Memory is reserved using this command. Reserve Zone
allocates the exact amount of memory for the number of
zones you want to set up. For example, if you wanted to
create a dozen detection areas on the screen, you would
use this:

Reserve Zone 12

To restore the reserved memory back to your main
program, you simply use this command with no number
parameter. Like this:

Reserve Zone

SET ZONE
Each zone needs eight "bytes" of memory, and once the
memory has been reserved, rectangular zones can be set
ready to be tested in action. A number is allocated to the
zone, followed by the zone coordinates from the top left
hand To the bottom right-hand comers, like this:

Set Zone 1,50,150 To 75,160

=ZONE

You now need a way of testing to see if an object's
coordinates are inside any particular zone. Use the Zone
function like this:

Z=Zone(x,y)

After that line has been called, Z will hold the number of
the zone at coordinates x,y. If more than one zone has
been set up there, the number of the first zone will be
held. If no zone has been set up there, a value of zero is
held.

193

Chapter 11

194

USING SCREENS

These graphic coordinates normally relate to the current
screen, but another screen number can be included in
front of the coordinates, like this:

Z~Zone(l,x,y)

You can also use the X Bob and Y Bob functions together
with this function to detect the number of any zones
visited by a particular Bob. So to keep track of Bob
number 5, you would use something like this:

Z~Zone(X Bob(5),Y Bob(5»

=MOUSEZONE

This function works in much the same way, and is used
to check if the mouse pointer has entered a zone. For an
instant example, take a look at the next demonstration
program in the ""Screen Tutorials" folder:

Screen_TutoriallO.AMOS

RESET ZONE

Thiscommand switches off all the detection zones created
by Set Zone, butit does NOT return the memory allocated
by Reserve Zone back to the, main program. If you
follow Reset Zone by any zone number, then only that
numbered zone will be switched off. For example:

Reset Zone 1

You can also surround a string of text with a screen zone.
This allows you to set up your own menus and dialogue
boxes on screen, which will act like the option "buttons"
used throughout the Easy AMOS menus.

ZONE$

TheZone$ fu nction works wi th the following parameters:

X$~Zone$(text$,nurnber)

where text$ contains the string of characters for one of

Chapter 11

SCREEN
BLOCKS

"The tragedy
of the Blocks
IS now mere
farce. "

(Alexander
Dubcek, 1989)

USING SCREENS

your'buttons",andnumberreferstothenumberofthescreen
zone to bedefined. In thiscase, the 'button" would beactivated
automatically if X$ was printed to the screen.

lfyouhaveused all the wondersoftheEasyAMOSBobEditor,
you should be familiar with the idea of grabbing a block of
graphics from a screen. To get the best results from this part
of the Chapter, open a suitable screen now and load in your
favourite IFF picture, or draw some shapes on the screen and
fill them with different patterns, ready to grab and use as
blocks.

GraphicBlocksarenotsavedalongwithyourprograms,sothe
following Block instructions are used to hold and manipulate
tempormygraphicsdata. Blocksareveryusefulforsettingup
items such as dialogue boxes, by saving background areas
beforenewgraphicsgetdisplayed. Theycanbeusedtoereate
the "parts" for all sorts of entertainment programs like visual
puzzle games, as well as more serious programs such as
designing kitchen plan layouts.

GET BLOCK

To grab a rectangular area from the current screen graphics,
and tum it into a block, the Get Block command is used,
followed by your choice of a block number ranging from one
all the way up to 65535 You then set the coordinates of the
block to be grabbed as follows: the x,y-coordinates for th.e top
left-hand comer of the block, the number of pixels rnakingup
the width, then the number of pixels making up the height of
the block.

A "mask" code number can be added to the end of these
parametersifyoulike.lfthemaskcodeissettoO,theblockwill
destroy and replace any graphics that used to occupy its
position on the screen. If the mask code is set to 1, the block is
givenabackground maskand colour "zero" wilJ be handled as
if it is transparent. Here's an example ereating block number
1 with the mask code set to zero.

195

Chapter 11

196

USING SCREENS

Get Block 1,x,y,width,height,O

PUT BLOCK

To redraw a block at its original coordinates on the
current screen, simply add the block's identification
number to the Put Block command, like this:

Put Block 1

If you want to draw the block at a new position, then add
the new x,y-coordinates after the block number. For
example:

Put Block l,x2,y2

The next ready-made example demonstrates how Get
Block and Put Block can be used to create a very silly,
very amusing game. First of all, it pastes four creatures
on the screen, ready to be dismembered. Then the Bobs
representing heads, bodies and legs can be rearranged
at random by pressing a key. Try it out now:

Screen Tutorialll.AMOS

Blocks will normally be displayed using all the available
screen "bit planes·. This is the same as a "bit pattern" of
% 111111. Ambitious programmers may want to reset
the bit planes to create various special effects, so refer
back to the differen t settings in the section of this Chapter
that deals with the Screen Copy command. As usual, the
best way to get to grips with different settings is to
experiment with them. This example would put block
number 1 at coordinates x2,y2 in inverse video:

Put Block 1,x2,y2,%OOllOOOO

DEL BLOCK

To delete all of your new blocks, and return the memory
they used back to the main program, use this command:

Del Block

Chapter 11

COMPACTING
SCREEN
MEMORY

"The highest
compact we can
make is the truth
between us. "

(Emerson, 1860)

USING SCREENS

If you only want to get rid of a single block, then all you
have to do is follow the command with that block's
identification number, like this:

Del Block 1

Here is a pair of simple, useful and highly effective
commands for reversing the image of a whole block.

HREVBLOCK

This command reverses any numbered block by flipping
it over its own horizontal axis. Try grabbing a block
now, then put its image back on screen alongside its
reversed image.

VREVBLOCK

As you would expect, this is used to flip a block over its
own vertical axis. For example:

Vrev Block 1

It's all very well wanting to use spectacular electronic
pictures in your programs. But the idea is not so attractive
when you find that large amounts of your program
memory get gobbled up every time you include a graphics
screen. What you need is a way to crunch the data that
makes up the screen graphics and pack it into a smaller
amount of memory. Then you need a way to unpack it
ready for use again. Easy AMOS helps you to do just
that.

SPACK

This command stands for "screen pack", and is used to
crunch down the memory of the screen you select from
screen zero to screen 7 into a file in one of the memory
banks from bank zero to bank 15, like this example:

Spack 7 To 15

197

Chapter 11

198

USING SCREENS

If the bank you choose doesn't already exist, Easy AM OS
will reserve it for you before packing in the screen data,
which includes everything about the image including
its mode, size, and any offsets and display positions.

If you only want to packa part of a screen and not bother
about the rest of it, simply add the top-left and bottom
right corner coordinates, as usual. For example:

Spack 7 To 15,50,50,100,100

Easy AMOS will round off the x-coordinates to the
nearest 8 pixel boundary, and then try all sortsofmethods
to pack the screen data into the smallest amount of
memory. This will take about five seconds to work out.

The next ready-made example loads an IFF picture from
your "Easy AMOS Tutorial" disc, packs it, erases the
original and then unpacks it to a new screen. Try it out
now:

Screens Tutorial12.AMOS

PACK

The Pack command is slightly different from Spack,
because it only compresses the image data. This means
that the image must be unpacked into an existing screen.
Also there will be a slight flicker when the image is
unpacked, unless the screens have already been "double
buffered." It's better to use Spack for single buffered
screens. Screen numbers, memory bank numbers and
coordinates for sections of the screen to be packed are
used in exactly the same way as with the Spack command,
and x-coordinates are rounded to the nearest 8 pixel
boundary too.

Chapter 11

OTHER
SCREEN
MODES

USING SCREENS

UNPACK

As you might expect, this is how a packed image is
unpacked. Using double buffered screens will give
smooth results, otherwise the unpacking can get a bit
messy. ALWAYS make sure that the destination screen
is in exactly the same format as the packed picture,
unless you want to cause an error message on your
screen.

To unpack screen data atits original position, simply say
which memory bank you want to unpack, like this:

Unpack 15

To redraw the image starting from new coordinates,
include them after the bank number, like this:

Unpack 15,x2,y2

To unpack the image To a particular screen, just give its
number, like this:

Unpack 15 To 1

If the screen you select already exists, it will be replaced
by the new image. Unpacking normally takes about a
second until the image is ready to appear.

There is no point in wasting the computer's memory by
having loads of colours sitting in your paint pots if you
are only going to use two of them for some simple text.
On the other hand, there is no point restricting yourself
to 16 or 32 colours if you want to create images that are
as realistic as possible. Good news. There are two
special screen "modes" that change the number of colours
for use.

199

Chapter 11

EHBMode

HAM mode

200

USING SCREENS

Extra Half Bright Mode
This screen mode doubles thenumber of available colours
to 64, by creating two colours from each of the 32 colour
registers. Colour numbers 0 to 31 are loaded straight
from one of the colour registers, as normal. But the EHB
mode creates an extra set of colours alongside the
originals, by looking at their values and dividing them
in half. This makes the new set of colours exactly half as
bright as the originals. The new set of colours are given
numbers from 32 to 63.

Obviously, you can take full advantage of EHB by
loading the 32colour registers with the brightest colours
available, so that pastel shades are automatically
generated. Alternatively, if you were trying to create
graphics like an old fashioned photograph, you might
want to restrict your 32 colour registers to reds and
browns.

Have a look at a demonstration EHB screen now, by
loading the next example routine:

Screen Tutorial13.AMOS

Using the EHB mode makes no difference at all to any
other parts of your programming, and EHB screens are
treated exactly the same as your normal default screen.

Hold And Modify Mode

For an artist to carry 4096 pots of different coloured
paint around would be costly, heavy and silly. So an
artist uses common colours and mixes them together to
get the exact shade needed. Computers use exactly the
same trick, allowing you to hold onto an existing colour
and modify it very slightly, time and time again. This is
the theory behind the Amiga's Hold And Modify mode,
or HAM for short.

Chapter 11 USING SCREENS

HAM mode splits up colour values into four separate
groups. Colours registers 0 to 15 are nonnal, and all the
others exploit the way that all colours are made up from
Red, Green and Blue components.

Before you get too excited, it must be said that HAM
mode is very difficult to use It's useful for displaying
digitised colour pictures, and there are special packages
such as the HAM version of "Dpaint 4" which fully
exploit the Amiga's colour capabilities.

The last ready-made example that goes with thisChapter
opens a HAM screen ready to display all 4096 available
colours, like this:

Screen Open O,320,260,4096,Lowres

Look through the listing to see how the Red, Green and
Bluecomponents are combined, then [Run] the program
to see the result:

Screen_Example14.AMOS

And if you think that's impressive, just wait until you
hear what Easy AMOS can do with the Amiga's sound
capabilities All is revealed in the next Chapter.

201

202

Chapter 12

SOUND

o sound effects

o synthetic speech

o music

o samples

o the Sample Bank Maker

o waveforms

"Music has charms
to soothe a
savage breast. "

(William Congreve,
1697)

"Awopbopaloobop
Alopbamboom! "
(Little Richard, 1957)

203

Chapter 12

BUILT-IN
SOUND
EFFECTS

204

SOUND

Your Amiga cannot generate good sound effects. Your
Amiga can generate absolutely amazing sound effects.
It can also play music like a maestro and deliver synthetic
speech. Unfortunately, trying to get the best out of its
audio output via a dwarf television speaker is like
boiling water in a chocolate kettle: pathetic. Do not
despair, there is a pair of stereo phono sockets on the
back of your machine just waiting to release superb
stereo sound into your eardrums. Connect them to a
personal stereo or a hi-fi system to liberate the full range
of sound frequencies, and Easy AMOS can guarantee
that you won't be disappointed.

All Easy AMOS sound commandsoperateindependently
from your gameplays and utility routines, so they will
never interfere with your programming. On the contrary,
they can enhance your work in any way you choose,
acting as markers, adding realism, soothing, shocking
or providing comic relief.

You can enhance and enliven your programs with any
sound effect you like, but to get you started, Easy AMOS
comes equipped with a few built-in routines:

BOOM
BELL
SHOOT

Try this on for size:

~ Boom : Print "On a stormy night."

Wait lOO

Bell 1 : Print "AMOS swatted a bat'"

Wait 50

Shoot : Print "Ouch!"

Chapter 12

SYNTHETIC
SPEECH

Saying a
phrase

"Little said is
soonest mended. "
(Cervantes, 1615)

SOUND

Easy AMOS uses a clever interrupt system to
manufacture "white noise" for explosive sounds like
BOOM and SHOOT, but BELL is a simple pure tone that
you can massage by changing its "pitch", varying from
BELL 1 for a very deep ring, all the way up to BELL 96 for
the sort of high pitched sound that will drive the nearest
bat into a frenzy. Now try this:

IGl'" Boom: Wait 100 : Boom

Print "On a stormier night" Wait 50

For F~l To 96

Bell F : Wait F /10+1 : Rem Vary delay

Next F : Print "the bats had revenge"·
Wait 50 : Shoot : Wait 50 : Shoot

Print "Ouch!"

You are not restricted to printing words up on your
screen. Your Arniga can say them! Before Easy AMOS
gets verbal, a NARRATOR device will automatically
load off disc in a few seconds. After that, speech is
almost instant.

SAY
Simply use the SAY command followed by the words
and punctuation you want Easy AMOS to speak, inside
inverted commas:

IGl'" Say "Welcome Everybody!·'

Normally, any other instructions, music or sound effects
in your program will wait until Easy AMOS has finished
speaking before they start up again, and this speech
mode carries a value of zero. If you set this mode to a
value of 1, Easy AMOS is able to speak while executing
the rest of your program, although this will result in
your basic routines slowing down. Changes in mode
value are placed after a phrase, using a comma, like this:

205

Chapter 12

Setting speech
effects

206

SOUND

Say "a phrase.", 1

OK, have some fun getting Easy AMOS to say anything
that you want with this simple routine, but mind your
language!

!Iff'DO

Input "Please tell me what to say:";T$

T$~T$+". "

Say T$

Loop

SET TALK
Changing the style of your synthetic speech is very easy,
using the command SET TALK followed by four
parameters separated by commas:

Set Talk sex, mode, pitch, rate

Sex can be male (0) or female (1), or you can create
zombies, leprechauns, and muchelsc besides by playing
with the pitch parameter.

Mode has a normal speech setting (0) or a bizarre
rhythmic pattern (1).

Pitch changes the audio frequency of the voice from bass
(65) up to soprano (320).

Rate tells Easy AMOS how many average words to
recite per minute, ranging from a slow drawl (40) to
gibberish (400). All or any of these four parameters can
be left unspecified as long as you keep the commas in
their normal positions. For example:

I'(j?> Set Talk 1,1" : Say uA rhythmic lady."

Set Talk 0,0,320,350 : Say "F ishbubble. "

Set Talk" 65, 40 : Say "Lazy bullfrog."

Chapter 12

MUSICAL
PITCH

"Whoever
touches
pitch will be
defiled. "

(The Bible,
Ecclesiasticus

13:1)

SOUND

Now try and mix speech with sound effects and text,
something like this:

ICV' Boom: Wait 25

Print "It was the stormiest night"

Print "in the mad professor's lab. II

Say "It was the stormiest night,
in the mad professor's lab."

For F~l to 5

Shoot : Wait 7

Set Talk ,1,320,50

Bell F

Next F

Wait 50

Boom

Wait 5

Say "oh no"

Try out the second example in this Chapter again. Musical
ears may have already guessed that the numbers from 1
to 96 that are used to control the "pitch" of your BELL
correspond to the notes on a piano keyboard. 1 is the
lowest note you will hear by pressing the furthest left
white key on a piano, known as a Boltom C. 2 is
equivalent to the black note next to it, which is a C#, and
soon to"MiddleC" at 37, then all the way up to 96. Grand
piano keyboards run out of notes after 88, and most
synthesisers have a lot less than that. In Western music,
notes are given their own code letter so that musicians
can all refer to the same pitch when they are trying to
play together. These letters repeat themselves after
twelve notes, and each group of twelve is known as an
~octave".

207

Chapter 12

Pitch values

SOUND
CHANNELS

208

SOUND

Here is a table of pitch values, along with their musical
note equivalents and octave groupings.

OCTAVE
0 1 2 3 4 5 6 7

NOTE
C 1 13 25 37 49 61 73 85

CII 2 14 26 38 50 62 74 86
0 3 15 27 39 51 63 75 87

Oil 4 16 28 40 52 64 76 88
E 5 17 29 41 53 65 77 89
F 6 18 30 42 54 66 78 90
FII 7 19 31 43 55 67 79 91

G 8 20 32 44 56 68 80 92

Gil 9 21 33 45 57 69 81 93
A 10 22 34 46 58 70 82 94

All 11 23 35 47 59 71 83 95
B 12 24 36 48 60 72 84 96

Imagine that your Amiga produces sound like a wide
river, flowingoutfrom its innards. Easy AMOS lets you
split up this river into four separate channels of sound,
all pouring out at the same time. You can enjoy them
separately, or mix them together, directing the channels
straight ahead, to the left, to the right, increasing and
decreasing their volume or blocking them off altogether.
Now imagine that each of these channels can be given a
different voice. Finally, consider the possibilities of
controlling the volume and direction of each channel or
voice.

Chapter 12

Changing
channel
volume

Activating
voices

SOUND

VOLUME
The VOLUME command changes the level of sound
flowing through one or more channels, ranging from 0
for complete silence up to 63 for ear-splitting, like this:

~ For B=O To 63 : Rem B sets volume

Volume B : Bell 80 : Wait 5

Next B

As soon as you set a VOLUME level, all future sounds
and music will flow out of your speakers at that level,
across all four channels. So you need a way to change the
volume of each voice independently from one another.

VOICE
Sound tracks are made up of one or more voices that can
act independently or together, and the VOICE command
is used to activate them. To specify which voices you
want to play, VOICE needs a "bit mask" immediately
after it, with each bit representing the state of one of the
four available "channels" through which the voices can
flow. The bit pattern is standard, with the first four bits
representing the Amiga's four possible voices. To play
a particular voice, its bit must be setto 1, otherwise it will
remain silent.

BitO-> Voice 0

Bit1-> voice 1

Bit2-> Voice 2

Bit3-> Voice 3

So the following VOICE commands will have these
results:

Voice %0001

Voice %1111

Voice %1001

Rem Activate Voice 0

Rem Activate all Voices

Rem Voices 3 and 0

209

Chapter 12

PLAYING
NOTES

Stereo

210

SOUND

You can control the volume of each voice by following
the VOLUME command with a chosen voice followed
by a level of sound, like this:

Volume voice, sound level

Now try allocating different sounds to various voices,
and change their volumes in the following way:

I1:§" Volume %0001,63

Boom : Wait 100

Volume %1110,10

Rem Channel 1 loud

Boom : Wait 50 : Rem Channels 2,3·, 4 soft

Bell 40 : Wait 30 : Volume 50 : Bell 40

PLAY
Single notes can be played, allocated to any voice, given
a pitch and paused with a delay, all with one PLAY
command, like this:

Play voice,pitch,delay

Voice is set in the usual bit-map format and the pitch of the
note is set by the numbers from 1 to % in the Octave/Note
table above. Delay sets the length of any pause between this
PLAYcommandand your nextBasicinstruction,withadelay
of zero kicking off your note and immediately jumping to the
next Basicinstruction. Youcannowstartto create somestereo
hannonies. For example:

I1:§" Play 1,40,0 : Play 2,50,0 : Rem No delay

Wait Key : Rem Hit the keyboard

Play 1,40,15 : Play 2,50,15 : Rem Delay

Rem Playa random sequence of notes

Do

T=Rnd(96): V=Rnd(15): Play V,T,3

Loop

Chapter 12

MAKING
TRACKER
MUSIC

SOUND

If you can't write your own musical masterpieces, don't
worry. Easy AMOS lets you take another composer's
musical soundtracksand add them to your home-grown
games and utility programs. There are thousands of
public domain sound tracks written with systems like
Soundtracker, Noisetracker and StarTracker. To make
life reaIly easy, we have provided you with special
commands that will play any Tracker modules.

TRACK LOAD

is used to load a Tracker module into the memory bank
number of your choice. Be careful, because the first
thing it will do is erase any existing data in this bank
number before loading the new data. The new bank will
be caIled "Tracker".

Track Load "modulename", banknumber

TRACK PLAY

To start your Tracker music playing, simply give this
command, foIlowed by the appropriate bank number.
Try out a song now. Load this off your "Easy AMOS
Examples" disc:

~ Track Load "Easy_ Exarrples :Songs/m:x1 . laugh" , 6

Track Play, 6

If you leave out the banknurnber, banknumber6will be used
asa default anyway. Most computerised composers use sets
of patterns to make up their tunes, which can be repeated in
any order that pleases the ear. You can kick off a Tracker
sequencefromanyoneofthesepattems, providing you know
what they are of course. AIl you have to do is add thepattem
nurnberafterthebanknumber. Change the second line of that
lastexampleandadd a third lineasfollows. You'llbelaughing
all the way to the bank:

~ Track Play 6,12

Track Loop On

211

Chapter 12

Playing AMOS
music

"Music means
nothing; it is
sheer sound. "

(Sir Thomas
Beecham, 1926)

212

TRACK LOOP ON
TRACK LOOP OFF
TRACK STOP

SOUND

Use these commands to make Tracker music loop over
and over again, to stop a particular loop, and to stop an
of the Tracker music currently being played.

A Tracker module can only be played while an other
Easy AMOS music is stopped. Please note that you
should ONLY use Tracker instructions while a Tracker
module is playing, so don't mix them up with other Easy
AMOS sound commands, otherwise you may get some
very peculiar noises.

Also, Easy AMOS music controls like Volume and Tempo
will have no effect on Tracker modules, which have an
of their own controls built in.

MUSIC
This command allows you to load and play music
created withtheAMOSsystem,Easy AMOS'sbigbrother.
Any pieces of music that you want to use must be held
in the music bank, which is normally bank 3. You can
play these pieces without affecting any other part of
your Basic program, because Easy AMOS the musician
is highly intelligent. For example, if any sound effects
are triggered on a channel currently playing music, that
tune will be suspended while the sound effect is playing
and will start again from its previous position once the
effect is over. You can store several musical arrangements
in the same bank, provided there is enough memory, so
to ten them apart each melody must be given its own
number.

Chapter 12

Stuffing up
your passage

Turning music
off

Changing
volume

Changing
speed

SOUND

Up to three different melodies can be started at a time,
but each new MUSIC command will stop the current
song and hold its status in a stack. When the new song
has ended, the original music will start again exactly
where it left off. If you do not want your music to play
through to the end, you can halt it in one of two ways:

MUSIC STOP
will bring the current single passage of music to a halt.
If there is any other active music waiting to be played,
that music will begin to play at once.

MUSIC OFF
is used to completely tum off all music in your program.
After using this command, you can only restart your
sound track by executing your original MUSIC
instructions all over again, right from the beginning.

MVOLUME
This command is used to set the volume of a piece of
music, or to change its volume. It must be followed by
a number between 0 for silence, up to 63 for as loud as
possible. Obviously, by setting up a simple loop, you
can fade your music up or down.

TEMPO
Changing the speed of a piece of music or sound effect
can enhance the mood of most programs. The TEMPO
command is used to modify the speed of your current
tune, and must be followed by a number ranging from 1
for as slow as possible, up to 100 for incredibly fast.

This will work fine unless you have taken music created
by the Soundtracker system, which mayinc1ude its own
tempo labels. Any such labels will override TEMPO
settings in Easy AMOS.

213

Chapter 12

Volume meter

SAMPLED
SOUND

214

SOUND

=VUMETER

Most of us are familiar with the sight of Volume Meters
(Vumeters) jumping up and down on hi-fi displays.
Easy AMOS is not only able to respond to volume, but
also uses this function to make your graphics dance
around in response to the intensity of your soundtrack.
It is used like this:

S~VUMETER(v)

where v is the voice (from 0 to 3) being tested and
returning the volume of the current note being played,
and s is an intensity value between 0 and 63.

Modern computers are able to store sound frequencies
in the form of digits. Your Amiga is a digital sound
synthesiser and Easy AMOS is ready, willing and able to
exploit its wonders. There are many digital sound
samplers on the market, and all you have to do is plug
them in to your computer, grab sound samples off CD,
cassette or radio and use them. Unfortunately there are
two problems in enjoying these sources of superb sound:
firstly sampler cartridges are rather expensive, secondly
stealing someone else's audio creations is illegal! No
problem. There are thousands of public domain sound
effects and musical instrument samples that Easy AMOS
can import and transform for your own purposes,
perfectly and legally. A tiny selection of typical samples
is included on your "Easy AMOS Examples" disc, and
we'll be loading them in a moment.

Chapter 12

Playing a
sound sample

SOUND

SAM PLAY
This command squirts a lovely sampled sound through
your audio system. It can be qualified in any of the
following ways:

SAM PLAY s

SAM PLAY v,s

SAM PLAY v,s,t

where s is the number of the sample to be played,
please read on for full details.

v is a bit-map holding a list of all the voices the
sample will use, as already explained.

f sets the speed at which the sample will be played
back. This setting is given in Hertz, which is a
profeSSional standard of measurement, but all you
need to know for now is that a rate of 4000 will do
for simple sound effects and understandable speech
needsa rate of about 10000. Experiment and decide
what sui ts your samples best, then experiment again
and hear how different playback rates can create
different effects from your original sound samples.

If you can't wait to collect your own sound samples,
have some fun now with this wonderful little program.
It loads up a bank of ready-made samples from your
"Easy AMOS Examples" disc, and allows you to play
them in random order:

215

Chapter 12

216

SOUND

II7 wad"Easy_ Exarrples : sounds/Block _ Sarrples .abk"

Curs Off : Cls 0 : Paper 0

Locate 0,10

Centre npress a key between A and J~

DO

A$~Inkey$

A~Asc (A$)

If A>96 and A<107

Sam Play A-96

End If

LOOp

Here are the offidal titles of the samples:

A Boioing

B Clang

C Dragon

D Ricochet

E Lemming

F Woodpeck

G Quackers

H Laserzap

I Robostep

J Sharkey

Try playing them rapidly like a mini-drum kit, as
well as holding down the keys to get some hammer
drill effects. Good, isn't it.

Chapter 12

Changing a
sample bank

SOUND

SAM BANK

Digital sound samples are normally stored in
memory bank 5, but you can assign a new memory
bank to hold your sound samples with the SAM
BANK command. Just include a bank number after
this instruction and all future SAM PLAY
commands will suck their sounds from that bank.
If you set up several parallel banks, Easy AMOS
can exploit their delights at any time with a simple
call such as:

Sam Bank 4

Time for some more instant sound effects. The next
program plays the bank of samples stored on your
"Easy AMOS Examples" disc that are used in the
"Tricycle Race" game. Load this file first from
direct mode:

Now hear what's stored in that memory bank, using
this:

IG?' For A~1 to 11

Print "Sample number ";A

For B~1 To 3

Sam Play A

Wait 20

Next B

Next A

217

Chapter 12

Playing a
sample from
memory

Repeating a
sample

218

SOUND

SAM RAW

You don't have to hold a sound sample in a special
bank. In fact, it can be stored anywhere that suits you
in the computer's memory, loaded using BLOAD, then
played with the SAM RAW command. When this type
of sample is called up, it is known as a "raw sample", and
it's up to you to enter the sample parameters longhand
so you can scan through any sound library discs. The
parameters are as follows:

Sam Raw voice, address, length, frequency

Voice has already been explained.

Address refers to the location address of your sound
sample, and the simplest location is within an existing
Easy AMOS memory bank.

Length confirms the digital length of the sample that
you want to play in bytes.

Frequency dictates the playback speed of the original
sample in Hertz, please refer to SAM PLAY above. A
typical raw sample command looks like this:

Reserve as work 10,39852

~''Easy_ Exarrples :Sounds/tricycle _ sarrples .abk"

Bload R$,start(lO)

Sam Raw 15,start(lO),length(lO),lOOO

SAM LOOP

If there is any reason that you need to repeat samples
over and over again, Easy AMOS can help you with a
single command.·

Sam Loop On

ensures that all sound samples which follow will be
looped continuously, whereas

Sam Loop Off

deactivates the routine.

Chapter 12

THE SAMPLE
BANK MAKER

SOUND

The whole purpose of Easy AMOS is to make all aspects
of computer programming as simple and friendly as
possible. That's why we've provided you with a ready
made recording studio for creating your own sample
banks! Load it from the "Easy AMOS Programs" disc
now:

Sample_Bank_Maker.AMOS

The working screen looks like this, so get ready for your
guided tour around its amazing capabilities:

219

Chapter 12

Current sample
window

Sample bank

220

SOUND

The top of the screen is divided into two. The left
hand side is a special window where the current
sample is displayed as a visual "wave pattern".
You can load an example and view it in a moment.
Silence is represented as a straight line, and sound
frequencies are displayed as jagged patterns of
vertical lines from the beginning to the end of the
sample. As the sample is "played", you will see
how the wave pattern corresponds to what you
hear. The name of the current sample will be
displayed above this window, along with its length
in bytes.

The right-hand side is where the contents of the
sample bank is displayed. Each sample is listed
with its own number, name and length in bytes. As
usual, a slider-bar and slider arrows are provided
to display any parts of the contents list that are too
big to fit into the display.

Between the Current Sample Widow and the list of
samples in the bank are two big buttons. These are
used to transfer a sample from one side to the
other. So you can pull a sample from the bank, test
it or work on it while it's in the Current Sample
Window, and then transfer it back at the selected
position in the bank. If a copied sample is
positioned as the last one in your bank, it becomes
a new sample to be added at the end of the bank.

An Information Line runs across the whole of the
screen. Below that is your panel of working buttons.
Let's load up some samples to work on now.

Chapter 12

I

~
R

~ JI

I
I

SOUND

Use the mouse to trigger all of the control buttons, as
usual. Have your "Easy AMOS Examples" disc ready in
thedrive,andgetreadyto edit "Easy_Examples:sounds/
Block_Samples.abk" after pressing [Load Bank]. The
numbers, names and lengths of all the samples should
appear in the sample bank.

Now load a sample into the Current Sample Window.
Try selecting "Quackers", by highlighting it and then
[Left]. When a "raw" sample is loaded, its name is
computed from the file name, and its frequency is
automatically set to 8363 Herz (the Soundtrackerdefault
setting.) If a sample is held in "IFF", its own name and
frequency are automatically grabbed. As soon as a
current sample has been loaded, all the other control
buttons become active.

If your audio system is ready, [Hear] the current sample
now. See how the frequency pattern is shown between
the "start" and "end" borders of the Current Sample
Window as the sample plays. You are now ready to start
editing the sample.

Trigger the [Start] and [End] arrows to move the settings
for the beginning and end of the current sample. Assoon
as these settings are moved off the window boundaries
vertical lines appear to mark the new start and end
positions. You can also click directly on the start and end
lines in the Current Sample Window, and drag them to
change their positions. If you are using "Quackers", try
to isolate a single" quack" and [Hear] the result.

221

Chapter 12

+++
++
+

HERTZ

222

SOUND

The frequency at which a sample is played is measured
in Hertz, and by changing this frequency you can create
wonderful effects. This panel contains "plus" and "minus"
buttons with the [+++1 button for rapid raising of the
frequency, the [-I button for fine-tuning downwards,
and so on. Try changing the frequency of the current
sample by decreasing the Hertz setting now, and [Hearl
it. Next, raise the frequency until your duck sounds
demented. If you use the RIGHT mouse button when
setting frequencies, you will get rapid level changes.

Trigger this button if you want to rename your edited
sample. You can type in up to eight characters after the
prompt, and the new name will appear.

When you've finished editing the current sample, you
can [Savel everything that is held between the start and
end lines in the Current Sample Window as an "IFF" file.
These "Interchangeable File Formats" are commonly
used to storedata that can be read by different machines.
Any changes you have made to the sample's frequency
and name will be saved as well.

Finally, let's look at the remaining buttoris that control
the Sample Bank Maker.

Thisinsertsan "empty" sample at the highlighted position
in your bank, where it waits to be filled. Use it to copy
the current sample to anywhere you like in the bank.

This is a powerful setting, so be careful when you use it.
The highlighted sample is deleted from the sample bank
when you press this bu tton, and it can NOTbe recovered!

Chapter 12

TWIDDLY
BITS

MAKING
WAVES

Setting upa
wave form

SOUND

To clear the entire sample bank, use the [Clr Bank]
button.

To give your sample bank a new identity, use the [Save
As] option, otherwise [Save Bank] will commit your
edi ted sample bank to the safe-keeping of the current
disc. The [Quit] button isat the top of the screen, and will
take you back to the Edit Screen. Let's go back now and
look at some audio waves.

It has been explained how pure notes are summoned up
using the PLAY command, but Easy AMOS is happy to
PLAY much more complex sounds using professional
twiddly bits like wave forms, white noise, filters and
envelopes.

Every individual sound has its own identity pattern; a
sort of audio fingerprint. That is because each sound is
composed of its own special frequencies. We have all
seen a hospital monitor screen with a moving wave
pulsing in time to the frequencies of a heart bea t. Different
sounds create different waveforms in exactly the same
way: a cymbal crash has a waveform of jagged peaks
very close together, whereas the smooth harmonics of a
cello make much more rounded waves.

SET WAVE

This command is used to set up the waveform for any
sound that you want Easy AMOS to PLAY. Each wave
carries its own identity number followed by a string that
defines the shape of the wave, like this:

Set Wave 2,S$

223

Chapter 12

Assigning
waves to
channels

224

SOUND

Wave number 0 has already been allocated to the
sort of random noise shape that produces
percussion effects, wave 1 has been preprogrammed
with a smooth shape for generating pure tones, so
start your own WAVE numbers from 2 onwards.
Shape strings are set using a list of 256 numbers,
with each number representing its own part of the
complete wa veform. Each number can range from
127 at the peak of any part of the wave, down to-
128 at the bottom of a wave pit. Don't forget that
Easy AMOS strings can only hold positive numbers,
but the solution for entering negatives is easy:
simply add 256 to any negative number. Before
you can playa waveform, Easy AMOS must be
instructed which channels are going to be used for
pumping out the sound.

WAVE

The WAVE command assigns whatever wave
number you specify to one or more sound channels,
in the following way:

Wave 2 To 15

Remember that voices contain a bit-map pattern,
and will be unaffected by any wave unless a bit in
the pattern is set to 1. If this is done, the appropriate
voice will be triggered by PLAY. This can be
demonstrated by:

~ Wave ° To %1111 Rem Play all voices

Play 20,10

Wave 1 To %0001 Rem Assign voice zero

Play 60,0

Chapter 12

Assigning
samples to
waves

Deleting a
wave

Assigning a
noise wave to a
channel

SOUND

SAMPLE

To PLAY one of your samples stored in the sample bank
directly in your program, a very powerful command is
provided. SAMPLE assigns the specified sample number
to the current wave, like:

Sample 1 To 15

And you can choose a range of voices to be set by the
SAMPLE command with a standard "bit-map".

You must experiment with the range of notes that any
particular sample can handle, but anything between 10
and 50 seems to be satisfactory.

DEL WAVE
To get rid of a wave that has been set up with a SET
WAVE instruction, simply use this command followed
by the number of the wave you wish to vaporise. When
this has been done, all voices will be set to the standard
default sine wave. The pre-set waves 0 and 1 cannot be
eradicated, so you can only delete waves 2 and upwards.
For example:

DEL WAVE 2

NOISE
Thiscommandhasthesameaffectasassigningthewhite
noise waveform zero to the selected voices, and is used
to form the foundations for a whole range of special
effects such as explosions and percussion drumming.
For example:

fUr' Noise To 15

Play 60,50

Play 30,0

225

Chapter 12

Making an
audio envelope

226

SOUND

SETENVEL

An envelope is audio jargon for the life cycle enjoyed by
individual sounds: the way they are born, live and die
away. Like wavefonns,envelopes have their own distinct
shapes, usually seen as having four parts: attack (how a
sound builds up), decay (the way it fades), sustain (how
long it hangs on) and release (the manner in which it
ends.) Easy AMOS uses envelopes to change your
original wavefonns during their short life, according to
a set pattern, and they have the following parameters:

SET ENVEL wave,phase TO duration, volume

Wave is simply the number of the wavefonn you are
targeting. Any number can be used, including the 0 and
1 pre-sets.

Phase refers to a particular chunk of the original
wavefonn that is to be defined, ranging from 0 to 6.

Duration controls the length of this particular chunk or
phase of the waveform, and is expressed by each unit
representing one fiftieth of a second. This is how you
control the speed of a volume change in any phase of
your wavefonn.

Volume specifies the volume to be reached by the end of
this phase, ranging from 0 for silence to 63 for full blast.
So that:

Set Envel 1,0 To 200,63

will affect waveform number 1, and act on chunk zero
(its first phase, lasting 4 seconds), ramping it up to full
volume by its end, no matter what its original volume
was.

Chapter 12

Filtering
sounds

fr'

SOUND

LED

Most tape recorders and hi-fi systems have some sort of
filtering system to filter out unwanted hissy frequencies
and clean upsound. When you usefiltersthereisalways
a trade off between quality against audio definition.
You will have to experiment with the LED function and
decide for yourself if you want to sacrifice natural high
frequencies in order to reduce distortion, and Easy
AMOS makes your decision incredibly simple. Use LED
ON with your music and sound effects to see if they are
more pleaSing. If it works for certain sequences but not
for others, allow the original sounds to come through
with LED OFF.

In the next Chapter, you will enhance your home-grown
creations with your new knowledge, and turn them into
audio-visual spectaculars.

227

228

Chapter 13

MATHS

o arithmetic

o floating point numbers

o trigonometry

o random numbers

"1 don't believe
in mathematics. "

(Albert Einstein,
1954)

"There are just
three steps
to heaven."

(Eddie Cochran,
1960)

Chapter 13

ARITHMETIC

230

MATHS

Easy AMOS isn't proud, and is happy to perfonn the
most humdrum maths operations. Nothing can be
simpler than running this wee sum:

~ Print 2+2

Arithmetic operations are dead easy, provided you use
the right symbols:

+ the plus sign always signals addition

- the minus sign is used for subtraction

• but for multiplication an asterisk must be used

/ and division is made using this slash symbol

A in Easy AMOS maths, this character is what is known
as an 'exponential symbol'. It means 'raise a number
to a given power', which is exactly the same as
multiplying a number with itself. so that:

Print 3'5

is the same as typing in:

Print 3*3*3*3*3

Now run this calculation:

~ Print 2+2*2

Something appears to have gone horribly wrong!
Everyone knows that 2 plus 2 is four, times two equals
8, but Easy AMOS reckons the answer is 6.

Philosophers might argue that both answers are right,
but this would lead to arithmetical chaos. In fact Easy
AMOS is only taking your instructions literally, and
working on a set of built-in priorities. Make your
intentions clear with this:

~ Print (2+2) *2

Chapter 13

Expressions

"The glory of
expression is
simplicity. "

(Walt Whitman,
1855)

MATHS

A combination of calculations is called an expression,
and Easy AMOS handles expressions in strict order of
priority. Any 'exponentials' are calculated first. Then
any multiplications and divisionsarecalculated,inorder
of appearance from left to right. Only after these have
been dealt with will additions and subtractions be
attended to, again in order from left to right.

You can get round this rigid system by using brackets 0,
and anything inside your brackets is evaluated first and
treated as a single number.

The following calculation gives a result of 43

IG? Print 10+2*5-8/4+5'2

because it is evaluated in the following order:

5'2 25

2*5 10

8/4 2

10+10 20

20-2 18

18+25 43

If you add two strategic pairs of brackets to the same
calculation, you transform its lOgical interpretation,
resulting in an answer of 768:

IG? Print (10+2) * (5-8/4+5) '2

because it is now calculated in this order:

10+2 12

5-8/4+5 5-2+5

5-2+5 8

8'2 64

12*64 ~768

231

Chapter 13

VALUES

Comparing
values

"The greatest
happiness of the
greatest
number."
(Jeremy Bentham,

1781)

232

MATHS

It is obvious that every expression has a value, but
expressions need not be restricted to whole numbers
(integers), or any sort of numbers. Expressions can also
be made up of real numbers or strings of characters. If
you need to compare two expressions, Easy AMOS has
a pair of functions that wi11look at them and work out
which has the maximum or minimum value.

=MAX

=MIN

Different types of expressions cannot be compared in
one instruction, so they should not be mixed. If you
want to compare the values of two integers,or fractional
numbers, or character strings, and find the maximum
value, use:

v=MAX(x,y)

v#=MAX(x#,y#)

v$=MAX(x$,y$)

In the same way, if the minimum of two values is wanted
from a similar pair, use:

v=MIN(x,y)

v#=MIN (x#, y#)

v$=MIN (x$, y$)

Try to understand why these comparisons give the
results listed on the next page:

~ Print Max(99,1)

P.=Min(99,1) : Print A

Print Max("Easy AMOS", "AMOSH)

Print Min ("Easy AMOS", "AMOSN)

Chapter 13

Finding a sign

Absolute
values

"A fool kncyws
the cost of
everything and
the value of
nothing. "

(Oscar Wilde,
1894)

99

1

Easy AMOS

AMOS

=SGN

MATHS

Any number can have one of three values: negative,
positive or zero. Easy AMOS uses the SGN function to
discover and tell you the sign of any integer or fractional
number.

s~SGN(v)

s~SGN(vi)

The three possible results are these:

-1 if the value is negative
1 if the value is positive
o if the value is zero

=ABS

This command is used to convert arguments into a
positive number. ABS returns an absolute value of an
integer or fractional number, paying no attention to
whether the number is positive or negative, in other
words, ignoring its sign.

r~ABS(v)

r#~ABS (vi)

for example

~ Print Abs(-l),Abs(l)

will result in

1 1

233

Chapter 13

Square roots

FLOATING
POINT
NUMBERS

Making
integers

Setting
accuracy

234

MATHS

=SQR
This function calculates the square root of a positive
number. That is to say, it finds out what number has to
be multiplied byitselfto give the requested value. So the
value of 5 will be given for this:

1& Print Sqr (25)

Arguments that consist of a load of numbers either side
of a decimal point can often give very messy results in
Basicprogramming. The decimal point floats backwards
and forwards along such calculations, slowing things
up and usually giving levels of accuracy way beyond
your needs. Easy AMOS can change these "floating
point numbers" to make them more useful in terms of
programming speed or accuracy.

=INT
In an expression like i=INT(v#), the !NT function rounds
down a floating point number to the nearest whole
number, the nearest integer. So that:

1& Print lnt (3.99999)

will be rounded down to 3, whereas:

1& Print lnt (-1.1)

is rounded down to-2

FIX

Supposing you are computing your bank balance, but
you only want to see your money displayed to the
nearest penny, or cent, or pfennig. Easy AMOS uses the
FIX instruction to change the way floating point numbers
are displayed or printed out.

FlX(n)

Chapter 13 MATHS

If n is bigger than zero and smaller than 7, then that will
be the number of figures shown after the decimal point.

If n is greater than 15,any trailing zeros will be removed.

Ifnisless than zero, theabsolutevalueofn will determine
the number of digits after the decimal point, and all
floating point numbers will be shown in 'exponential'
format.

Try these examples:

II? Fix (2) : Print PIJI

Rem Two digits after the decimal point

Fix(-4) : Print PIJI

Rem Exp with four digits after point

Fix (7) : Print PI4/

Rem Revert to normal printout

TRIGONOMEIRY Although you used PI# for the last examples, you may
not understand why the number beginning 3. 14 popped
up. PI is the Greek letter that is used to summon up a
number which begins 3.141592653 and goes on for ever
and ever. In trigonometry, PI is the tool for calculating
aspects of circles and spheres, so it can be very useful for
working out angles, distances over curves, trajectories
in gameplay, or even musical waveforms.

y-axis

SIN a

x-axis _--t ___ + __ -''I-'-_x-axis

y-axis

235

Chapter 13

Using Pi

"Diana and I
enjoy the Three
Degrees."

(Prince Charles,
1985)

Using degrees

Using radians

236

MATHS

=PI#

To avoid any clashes with your own variable names, use
the # character as part of the PI token name.

Supposing you need to know more about a circle. Look
at the diagram, where a point has moved from the right
hand side of the x-axis up along the perimeter for a
distance a, and stopped at position b. Really, we would
not refer to a as the number of degrees in the angle
between the x-axis and the line from the centre of the
circle to point b, because computers normally use units
known as 'radians' instead of degrees.

DEGREE
If you are unhappy with the complexities of radians,
Easy AMOS is happy to accept instructions using degrees.

Once this instruction has been given, all further calls to
trigonometry functions will expect to use any angles to
be given in degrees, like this:

IG?" Degree

Print Sin(45)

RADIAN
As has been explained, your Amiga uses a default by
which it expects all angles to be given in radians.

If you have used DEGREE and you want to get back to
normal using radians for all future angles, simply give
the RADIAN instruction.

Chapter 13

Finding sines

MATHS

=SIN
This function calculates how far point b is above the x
axis, and this distance is known as its sine. It always
returns a floating point number, for example:

IW Degree

For X~O To 319

Y#~Sin(X)

plot X,Y#*SO+100

Next X

Finding cosines =COS

Going off at a
tangent

The distance that point b is to the right of the y-axis is
known as the cosine. If b goes to the left of the y-axis, its
cosine value becomes negative.
Similarly, if it drops below the x-axis, the sine results in
a negative value. Try adding the following two lines to
your last example between the Plot and Next instructions.

IW Y#~Cos (X)

Plot X,Y#*SO+100

=TAN
For any angle, when you divide its sine by its cosine you
get what is called its tangent. TAN is the function that
gives this tangent. Supposing that a is 45 degrees,
making its sine and cosine equal in length. See if you can
manipulate the floating point number to give the correct
answer for:

IW Degree

A#~4S : Print Tan(A#)

237

Chapter 13

RANDOM

Creating
random
sequences

238

MATHS

Imagine greeting Easy AMOS every morning with "How
are you today?" and the answer al ways came back, ''Very
well, thank you." What a predictable relationship that
would be. The easiest way to introduce an element of
chance or surprise into a program is to throw some
numbered options into an electronic pot and allow Easy
AMOS to pull one out at random. After one has been
selected and used, it gets thrown back into the pot and
has an equal chance along with all the others of being
used again.

=RND

You can generate integers at random between zero and
any number you placein brackets after the RND function.
If this number is less than zero, RND will return the last
value it pulled out of the pot. Try generating random
colours and positions with this:

II:§" Do

C~Rnd(15) : X~Rnd(320) : Y~Rnd(200)

Ink c : Text X, Y, "Easy AMOS AT RANDOM"

Loop

If the number you choose to put in brackets after Rnd is
greater than zero, a "real" random number will be
generated. If the number equals zero, then the last
random number is generated.

Using the random number generator, you can tum Easy
AMOS into a card dealer, the creator of an ever-changing
galaxy or much more interesting and unpredictable
when you ask the question, "How are you today?"

Chapter 14

CREATING
A GAME

o single-player game

o one or two-player game

o title sequences

o hi-score routines

o the Easy AMOS Challenge

"Games are a
serious business."

(Anacharsis, 600 Be)

239

Chapter 14

BLOCK
BUSTER

Procedures

240

CREATING A GAME

Wouldn't it be amazing if you could get inside another
prograrnrnersheadandseehowthebrainworks.lmpossible?
AnythingispossiblewithEasyAMa>,evenabraintransplant!

The time has come to use all of your new knowledge and
experience for the serious business of examining some not so
serious games, written by the experts. ThisChaptergivesyou
background information about the example games to be
found on your Easy AMa> discs. The authors have included
loads of helpful notes and comments in their listings, and you
can almost hear them thinking aloud, as they explain their
techniques to you. FollowthisChapterasyougothroughtheir
ideas on screen, and enjoy the games as you learn from them.

Any keywords and techniques you are not sure about can be
examined using the [Help] feature, or you can look them up
in the Qossary. Let's start with a computing classic!

Please load thisgame from your "Easy AMa>Examples" disc,
using the File Selector:

Block Buster.AMOS

It has been written for you by Ronnie Simpson, and you are
invited to use the "bat" at the bottomofthescreen to bounce the
"ball" and knock "bricks" out of the wall. After playing it a few
times, go into the Editor and look through the listing to
examine how everything works. There are some very useful
notes and tips at the end of the listing, but in case you get lost,
these are the main points you should look for.

First of all, identify all these procedures and see what each of
them is used for:

RUBOUT[Z]

BAT [Z]

HOLDBALL[Z]

CHECKBAT

BONUS

SETBONUS[C]
INIT
SETBLCCKS
Gl\MECCMPLETE

Chapter 14

"All in all it's
just another
brick in the
wall."
(Pink Hoyd, 1979

Variable list

CREATING A GAME

NCMEN

SPEEDUP
SLOWOOWN

LIVES

Ml\RKLEVEL

RESET

Here is a table of the variables in the game, to help you
understand what they are used for.

A makes a "hard" ball if A=-l

B creates a "magnetic" bat if B=-l
C is the bonus number you have won
DC delay count to control ball speed
DX amount to be added to the ball's X

DY amount to be added to the ball's Y

E is the number of "bricks" in the level
H is the zone number under the ball
I is the size of the bat being used
M indicates the number of lives left
Q counts the number of "bricks" that have been

removed, before raising your bonus number
S is the score for the current level
ST is the score total for all levels
SH is the highest score so far

TI dictates the image number for "Smiley"

TX is the amount to be added to Smiley's X
TY is the amount to be added to Smiley's Y

u refers to Smiley's X position
v refers to Smiley's Y position
W is the number of the current level
X refers to the Ball's X position
Y refers to the Ball's Y position
Z has various non-global uses, such as For INext

loops

241

Chapter 14

Arrays

Bob numbers

Programming
hints

Setting up the
screen

242

CREATING A GAME

Now look for these three arrays, and see how they hold
the coordinates of the ''bricks''.

x () holds the X coordinates of all possible brick
pOSitions

Y () holds the Y coordinates of all possible brick
positions

N () holds the number of "hits" needed for each
brick pOSition.

The Bobs have been allocated these numbers:

1 the ball
2 the bat
4 the bonus pointer

5 speed number
6 "Smiley"

This section is a brief tour of some of the most important
parts of the program. The "line numbers" referred to are
displayed in the Information Line of the Editor Screen,
as you scroll up and down the listing. Make sure you
have opened all the procedures with [Altl+[F7]. Instead
of going through them in order of appearance, let's look
at them feature by feature.

(line 218) The screen is loaded from the disc using Load
Iff, and then packed to Bank 5.

(line 127) This unpacks the screen at the start of each
level of play.

(lines 135 to 146) The data for the ''bricks'' is held in Bank
9, and this data is read before each level of play is started.
After establishing the brick's colour and the number of
"hits", a screen zone is set up for each brick.

Chapter 14 CREATING A GAME

Moving the bat (line 202) Here's where the mouse is made invisible.

Moving the
ball

Speeding up
the ball

Animating
"Smiley"

(line 109) This limits the mouse to a small area of the
screen.

(line 31) The mouse coordinates are transferred to the
bat.

(lines 109 and 111) When a different sized bat is selected
as a bonus, the Limit Mouse command must be updated
to make sure that the bat is kept inside the playing area.

(line 41) The ball is moved by changing the X and Y
variables, using OX and DY as the amount to be added
in either direction. This is how the different angles of
"bounce" are calculated.

(lines 36 to 38) This is where checks are made while the
main loop is active, to see if the ball has hit the sides of
the playing area, or missed the bat.

(line 39) A test is also made to check if the ball has entered
any of the screen zones that represent a brick. If it has,
the appropriate brick is removed, otherwise a short
delay loop is used to make up for the time it would have
taken to erase the briCk.

(line 49) The program is slowed down to playing speed
by a delay loop inside of the main loop.

(line 34) When the DC counter reaches its target, the
delay loop is shortened and so the ball speeds up.

(line 46) Four different images of the "Smiley" Bob are
held in the Bob bank, and these are displayed in tum to
give the illusion of movement. A random number has
been used to slow down the speed of the animation.
Remember, Smiley's images are in bank areas 14 to 17.

(Lines 44,45 and 47) A similar routine to the one used for
moving the ball is used to control Smiley's movement
and restrictions.

243

Chapter 14

BUILDING A
TWO-PLAYER
GAME

244

CREATING A GAME

We have provided a useful help file for you to examine,
on the "Easy AMOS Examples" disc:

Block_Buster_HELP.AMOS

Feel free to adapt and change this game in any way you
want. Later in this Chapter you'll be offered hi-score
and title sequences if you want to make use of them.

After that ready-made example, would you like to
witness the whole creation process of a computer game,
from start to finish? Better still, after learning from the
experience of a professional, do you want to rip his game
to bits and adapt it for your own use? We thought you
would.

"Tricycle Ball" has been written justforyou, by the father
of Easy AMOS, Fran~ois Lionet. The object of the game
is to use your weird tricycle to bump a ball into your
opponent's goal. Play time is spli t into two halves of two
minutes each, and there are several modes of gameplay
tochoosefrom. You can struggle against another human
being or a robot player, and thereisevenademonstration
mode, where two robots play against one another . There
is also a built-in facility to select an easy or a difficult
standard of skill. Best of all there are no rules at all, so
anything is allowed, including using your opponent as
the ball!

All the facilities of arcade games have been included:
timers, on-screen messages, music and sound effects.
Best of all, Fran~ois has prepared no less than eight
separate files showing exactly how he has built up the
program, stage by stage. There are eight files that
demonstrate the build-up of the gameplay and the title
sequence.

Chapter 14

The automatic
learning
system

CREATING A GAME

As you would expect from such a friendly programmer,
Fran,ois has included an automatic method of spotting
each new stage in his creation. So, before you wander
through his brain, play the completed game by loading
and running TB_Step_S.AMOS which is waiting on
your "Easy AMOS Tutorial" disc. Select a human or a
robot opponent, or choose the demo mode. You need
one or two joysticks to play the game, unless you select
demo mode.

When you are satisfied with that, load the first step of the
game's creation from the same disc:

TB_Step_l.AMOS

and get ready to have fun as you learn.

Here's how to use the automatic learning system. Start
with the first Step of the program you have just loaded.
When you have worked your way through it, move on
to Step 2, and so on until you reach Step S. [Run] and
play with each Step as you go along, and then return to
the Editor to examine the listing.

Fran,ois has marked each of his new features with a
special code that looks like this:

All you have to do is jump to wherever this marker
appears, using the [Ctrll+[F] keys or call up the [Find]
option from the Editor menu by pressing the [Alt] key,
triggering [Find] and typing "***" after the prompt.
Once this sequence has been initialised, use [Find Next]
or [Ctrl]+[N] to jump to the next original idea. In this
way, you don't have to cover old ground as the program
Steps build up, and you will be taken directly to new
routines as they occur.

245

Chapter 14

STEP ONE

246

CREATING A GAME

The first moves.

Welcome to the first step in this series of ''Tricycle Ban"
programs. At this stage, the program is only an idea
firing across a few French brain cells, and jotted down on
the back of a dirty Metro ticket. Before any games
programming can be achieved, we need some graphiCS
to work with, SO "our ugly Bobs" are called up. By
closing the Editor we can save some memory, and
because there is no mouse pointer required, we hide it.
Now we specify where the files are to be loaded.

Are you using [Find Next] or [Ctrl]+[N] to jump to the
next * * * marker? Then let's continue.

Now we dimension the arrays. Simply read the notes in
the listings to see how this works for the coordinates of
the player's Bobs, the direction and speed of movement,
and how the animation is set up. Next the variables for
the Bobs are initialised.

After the "playfield" is unpacked into Screen 1, look at
the table that contains all the images to display the
player's tricycle. Notice how we check to see if the game
has been interrupted, how we synchronise the display
using three Wait commands, and how we go faster,
slower, turn left, right, brake and move the player. Now
you've got the idea of how the [Find Next] works, all we
need to ten you in this Chapter is what each Step of the
game's evolution contains. Check out all the notes for
yourself and explore the author's brain!

Chapter 14 CREATING A GAME

STEP TWO The collisions. Load:

STEP THREE

All the old *** markers from TB_Step_1.AMOS have
been erased in this listing, and the * * * marker is only
used to locate the new features included in this step of
the game's construction.

This stage includes the most important feature of any
arcade game: using collision detection to make the game
playable. We can exploit three types of collision in this
game:

- the relationship between the player's Bob and the
field of play. For example, what happens when you
crash into the boundary wall of the playfield.

- the relationship between two opposing players' Bobs.
For example, what happens if you avoid or collide
with the other "tricycle".

- the relationship between the players' Bob and
the Bob representing the ball.

The scrolling screen. Load:

TB_Step_3.AMoS

As before only the new features in this step have been
commented with the *** marker. Up to now, all the
Bobs have been moving around the full-sized Screen 1,
but now we focus our viewpoint by making the players
the centre of the action using a Screen Copy command.
This gives perfect scrolling, but we still have to exploit
the Double Buffer command to prevent flicker problems
and then synchronise the display. Finally, we are able to
create three different windows centred on each of the
two players as well as the ball, for a multi-camera effect.

247

Chapter 14

STEP FOUR

"To win at play
keep your eyes
on the ball."

(Epictetus, 160
AD)

STEP FIVE

STEP SIX

248

CREATING A GAME

The ball. Load:

TB_Step_4.AMOS

To make the ball as realistic as possible, it has to be given
its own speed and direction and the capability to fly
through the air as well as move along the ground. This
step also shows how the baH has been made to bounce
and appear to change in size by "zooming" it. Don't
forget the whole point of these example programs is that
you are invited to change and adapt them, and it is very
simple to experiment with the values of the arrays and
variables. Forexample, trychangingZBALLtoa different
value, and alter the zoom effect.

The robot. Load:

TB_Step_5.AMOS

This kind of arcade game is more entertaining when two
humans play against one another, but it must also allow
one human to play against the computer. This step
shows how a robot player is created, and how the robot
is made "intelligent". See how it decides if it should wait
and do nothing, or try and hit the other player or go for
a goal. It is also demonstrated how the robot can be
made more skilful to give its human opponent a tougher
challenge, but not so clever that it would be impossible
to beat it.

Cleaning up. Load:

TB_Step_6.AMOS

This is where the twiddly bits are added to the gameplay
parameters. Goals need to be detected and displayed, a
timer must be included and the speed of play needs to be
controlled. Players also need to come on and leave the
playfield at the appropriate time.

Chapter 14 CREATING A GAME

STEP SEVEN The final game. Load:

STEP EIGHT

HI-SCORES

TB_Step_7.AMoS

This step is where all the sound effects and music get
added, and includes the various on-screen messages
that you would expect to see in an arcade game. Also,
you can learn how different procedures are used to
choose playing modes, in other words, your choice of
demo mode or a human/robot opponent, and the level
of difficulty.

The title. Load:

TB_Step_8.AMOS

This is a completely independent program, and you are
welcome to adapt it for your own creations. The
TITLE_PAGE procedure is a neat package that
demonstrates how to manipulate a screen by reversing,
cloning and pasting images, and then animate the result.
But we're not quite finished yet.

For the finishing touch, load up the ready-made hi-score
program written by Fran,ois and J.P. Cassier.

Load this program from your "Easy AMOS Examples"
disc.

HiScores.AMOS

As you would expect, all the information you need is
fully commented in the listing, so feel free to use and
adapt this colourful program or simply insert the whole
routine into your own games!

249

Chapter 14

Olhergames

Tricycle Race

The Easy
AMOS
Challenge

250

CREATING A GAME

There are some other fully commented example
programs on your "Easy AMOS Examples" disc. They
have been designed so that you can bolt on your own
titles and hi-score routines. Use the knowledge you
have gained from earlier Chapters to change the graphics
and create your own Bobs, as well as trying out different
sound effects, samples and music. Simply load and play
them, then examine the listings of these example
programs.

In this horizontal bike race, use the mouse or joystick
buttons to move your animated Bob from left to right.
Load:

Tricycle_Race.AMOS

Are you ready to become an Easy AMOS graduate? Try
out this great quiz extravaganza and test your expertise,
with AMOS as the Quizmaster and you taking the part
of the challenger. Load this file from your "Easy AMOS
Tutorial" disc:

Challenge.AMOS

Are you ready for something a little more practical? The
next Chapter explains how to use Easy AMOSforcreating
a database.

Chapter 15

HANDLING DATA

o using data

o sequential files

o random access files

o designing a database

"It is a capital
mistake to theorise
before one has data."

(Sherlock Holmes,
1891)

~ __ c:____ _----_>

251

Chapter 15

Placing data

Reading data

252

HANDLING DATA

Using Easy AMOS for nothing but computer games is a
bit like using a violin asa baseball bat: it's great fun, but
you're missing out on the full potential. This Chapter
deals with some of the more practical ways Easy AMOS
can be used to handle the information that we call "data".

Let's start by learning how to place items of data in an
Easy AMOS program.

DATA

A Data statement lets you include whole lists of useful
infonnation in your programs. Each item in the list must
be separa ted by a comma, like this:

Data 1,2,3,4

READ

Once you've put your data into the program, you can
then tell the computer to Read this type of stored
infonnation, one item at a time, and then load it into
your variables. For example:

JIY> N=Rnd (100)

Read A$,B,C,D$

Print A$,B,C,D$

Data "Text stringR ,IOa,N, K Easy ~+"AMOSn

We'll come back to that example in a moment. When a
program reads data, a special marker jumps to the first
item in the first Data statement in the listing. As soon as
this item of data has been read, the marker moves on to
the next item in the list.

The main rule to remember is that the variables to be
read must be of exactly the same type as the data held at
the current position. Look at that last example again to
see how the different types match up. If you match up
one type of stored data with a different type of variable

Chapter 15

Restoring data

HANDLING DATA

after a Read command, an error message will pop up on
screen to tell you there's been a mismatch. Experiment
and Read a few of your own Data statements now.

The other rule to remember is that a Data statement must
be the only statement on the current line, because
anything that follows it will be ignored! Try this example
to prove it:

~ Read A$: Print A$

Data "I am OK" : Print "But I'm not"

You can put Data statements anywhere you like in your
programs, but if data is stored inside an Easy AMOS
procedure it will NOT be accessible from the main
program. On the other hand, a procedure can have its
own set of Data statements, which are treated completely
separately from the rest of the program. Here's an
example:

~ EXAMPLE : Read A$: Print A$

Data "I am main program data"

Procedure EXAMPLE

Read B$: Print B$

Data "I am procedure data only"

End Proc

RESTORE

If you want to change the order in which your data is
read from the order in which it was originally stored,
you can change the point where a Read operation will
expect to find the next Data statement. The Restore
command sets the posi lion of this pointer, by referring to
a particular label or line number. For example:

Restore Label

253

Chapter 15

SEQUENTIAL
FILES

254

HANDLING DATA

The name of the label can also be calculated as partof an
expression, like this:

Restore ~LA"+~BELL"

In the same way, you can Restore to a proper line
number or a line number that has been set up as an
expression, like this:

Restore LABEL+5

Restore is one of the tricks used by programmers to
make the computer select information, depending on
the actions of the user. It can be used for question and
answer quizzes, adventure games or teaching programs.

As well as allowing you to store and retrieve data inside
a single program or file, Easy AMOS can manipulate a
whole disc full of information files! Don't forget that
files are simply packages of information stored together
at a particular location on a disc.

Your Amiga uses two types of disc files: "sequential"
files, and "random access" files. Here's how Easy AMOS
can get the best out of them.

A sequential file is one that allows you to read your
information ONLY in the sequence in which it was
originally created. Normally with an Amiga, if you
want to change a single item of data in the middle of a
sequential file, you have to call up that file from the disc,
read the whole file up to and including the item of data
you want to alter, change the data and then write the
whole file back to the disc!

Chapter 15

"The theoretical
without the
practical is a
tree without
fruit."

(Sa'di, 1258)

.. yJ~"

Opening
sequential files

HANDLING DATA

Easy AMOS lets you have access to sequential files either
for reading data, or for writing it, but never for both at
the same time. Before we get on to the theory and a
whole host of new commands, let's have a little practice.
Use the disc that we recommended you to prepare,
labelled "My Programs". Type in this example, which
opens a file called SEQUENTIAL.ONE, allows you to
input some data, then closes the file:

~Open Out l,"sequential.one"

Input "Please tell me your name" ;N$

Print #l,N$

Close 1

Now let's read back the information stored in our file.
Try out this example:

([ff> Open In 1, "sequential. one"

Input #1,N$

Print "r remember you! Hello ";N$

Close 1

Every time you want to access a sequential file, you have to
open i~ then access the information and then dose it Those
three steps must be done in exactly that order. Here's the list
of commands you can use for handling sequential files.

OPEN OUT

Use this command when you want to open a sequential file
and writesomedataintoit. Beforeyougivethefilea name, you
mustgiveitanumberbetween 1 and 10, whichisthe"channeJ"
used to identify your new file when you input or print
information to it. If the file name already exists, it will be
erased! You have already used the example:

Open Out I, "sequential.one"

255

Chapter 15 HANDLING DATA

Adding to files APPEND

Preparing files

Closing files

Loading data

256

ThisworkslikeOpenOut,butitallowsyou toadd to your files
at any time AFTER they've been defined. If the filename
already exists, yournewdata will be "appended" toit,inother
words it will be added on to the end of that file.

Append I, "sequential. one"

OPEN IN

Use this to get a file ready for reading data from it. If the
filename doesn't already exist, Easy AMOS will report the
message "File not found".

CLOSE

Don't forget, you MUS[always close a file after you've
finished with it. If you forget to use theOose instruction, any
changes you have made to the file will be lost!

PRINT #

Use this command in the same way you use a normal Print
instruction,butinsteadofprintinginforrnationonyourscreen
it puts it into one of your files. Remember to tell Easy AMOS
which channel you want to use, then the name of the file to be
created, and don't forget to Oose the file's channel number
afterwards.

I!ff" Open Out 2, "sequential. two"

Print #2, "Just testing"

Close 2

Whenyou[Run)fhatexample,nothingappearsonscreenand
thedataisprinteddirect\ytothefile.Nowdeletethethreelines
of your example and [Run) this:

I!ff" Open In 2, "sequential. two"

Input #2,A$

Print A$

Close 2

Chapter 15

RANDOM
ACCESS FILES

HANDLING DATA

The data should now appear on screen after it has been
retrieved, using the Input# command. Here's how it
works.

INPUT #

This command reads information from a sequential file,
and loads these values into a set of variables. As with a
normal Input, each value in the list must be separated by
a comma.

You can find more information about sequential files in
the Glossary, where the following keywords are
explained:

LINE INPUT #,SETINPUT,=INPUT$,=EOF,LOF,POF

Are you ready for some more Easy AMOS magic? Random
accessfiJesareamazinglyuseful,becausetheyletyougetatthe
data stored on a disc in any random order you want. A
random access file is made up of chunks of data called
"records", and each record has its own identification number.
Eve!)' record can be split up into as many smaller chunks as
you like, and we call these sections "fields". Each field is used
to hold a single item of data.

Thebigdifferencebetweensequentia\fiJesandrandomaccess
files is that you must tell Easy AMOS the maximum size of a
"field" in advance, before you make use of it.

Afieldcanhold a1lsortsofdata,likeapassword,ora telephone
number or even a lineof a poem, and you are welcome to use
your imagination to adapt a ready-made program for your
own purposes at the end of this Chapter.

Let's say you want to create an electronic phone book. You
mightchoosethefollowingfields,withthefollowingmaximum
lengths of characters in each:

Field
NAME$
TEL$

Maximum length
25
12

257

Chapter 15

Structuring
random access
files

HANDLING DATA

If you are happy with the fields you want to manipulate
and the length of each field, you can set up the structure
for your electronic record or database.

OPEN RANDOM

This command is used to open a channel to a random
access file, like this:

Open Random 1, "ADDRESS"

FIELD

Now the record structure must be set up, and you use
the Field instruction to do this. After stating the channel
number, give the maximum number of characters you
are catering for in a field followed by its name, like this:

Field 1,25 As NAME $, 12 As TEL$

You can now place some records in the strings set up by
the Field command, for example:

NAME$~"AMOS'

Placing records PUT

258

Once a record has been placed into a string, you can
moveit from the Amiga'smemoryintoa "record number"
of your random access file. Still using channel 1, your
first record would be Put into the random access file like
this:

Put 1,1

The next record will become Record 2, and so on until
you fill up your address book. Let's try out all of this
theory and put it into practice with a phone book. When
you have created enough records, type in "exit" when
asked to enter a name.

Chapter 15

Reading
records

HANDLING DATA

IW Open Random 1, "ADDRESS"

Field 1,25 As NAME$,12 As TEL$

INDEX=l

Do

Input "Enter a name ~ ; NAME $

If NAME$="exit" Then Exit

Input "Enter the phone number "; TEL$

Put 1,INDEX

INDEX=INDEX+1

LoOp

Close 1

Having created your phone book, you'll want to use it.

GET

Ths instruction reads a record stored in a random access file,
when you tell it which channel to use, and the number of the
record to be read. Forexample,toread thefirstrecord, use this:

Get 1,1

It then loads this record into your field strings, and these
strings can be manipulated as you like. Obviously you can
only Get record numbers that have been Put onto the disc.
Here's an example to tryout:

IW Open Random 1, "ADDRESS"

Field 1,25 As NAME $, 12 As TEL$

Do

Input REnter Record number "; INDEX

If INDEX=O Then Exit

Get 1,INDEX

Print NAME$

Loop

Close 1

Print TEL$

259

Chapter 15

MAKING A
DATABASE

The Easy
Database

1. Na

HANDLING DATA

Themostsatisfyinghome-grownprograrnsarethosethatcan
be adapted for an unlimited number of uses. If you have
programmed Easy AMOS to act as an electronic telephone
directory, you can transform the same routines to act as a sort
of "card index" database for any other purpose: whether you
catalogue your stamp collection or draw up a schedule of all
your worldly possessiOns for an insurance policy.

You'll be pleased to learn that we've prepared a ready-made
database for you to learnfromand adapt It has been specially
written by Andrew Forrest Select it off your "Easy AMOS
Examples" disc now by loading the following file:

Easy_Database.AMOS

Take a quick look through the listing to see how many of the
routines you already recognise and then [Run) the program,
which will display the file selector to kick off the proceedings.
You willbeasked forthenameofafiletoloadorcreate, so type
in something like "Address _ book.DBS'.

This screen will now be displayed:

NQ .1

N i co I a Mlll"':ray

:<: AdW@:!i:!i
~a Cattie Road
Whisk",ill ..

3 Pos:tcode
HAT 1
4 Ag ..
24

S Phone nut.,"be:r
861 483 2564

260

Chapter 15

"Take a card.
Keep it. I've
got 51 left."

(Groucho Marx,
1933)

Entering Field
Data

HANDLING DATA

This electronic database holds records like a card index,
except for the fact that it's smart! Each screen represents
one record or card in the index, and the record number
is displayed at the top right of screen. The name of the
current file is at the top left.

Below this identification line are five "fields" of data, set
up to act as a page in an address book, as follows:

1 Name
2 Address

3 Postcode
4 Age
5 Phone number

Eachof these five "fields" is waiting for you to input some
data, and to put text into the database all you have to do
is click on one of the "fields" with the mouse, then type in
some text via the keyboard, pressing [Return] when
you've completed each entry. You can use the backspace
key to delete any mistakes. Enter some data now in each
of the five fields.

At the bottom of the screen is a row of graphic "icons",
which are your smart option boxes, triggered by the
mouse.

SEARCH

Supposing you know the name of the street where
somebody lives, but you can't remember their name. Or
supposing you wanttocaU up everyone you know of the
same age. No problem! After selecting the Search icon,
type in the characters to be searched for: a name, or a
number or part of an address. Once it's been found you
can continue searching by entering "Y", or stop the
search by entering "N" when prompted.

261

Chapter 15

262

HANDLING DATA

SORT

The Sort option looks through all of your data, and
organises it in any way you want! When you select this
option, you'll be asked to specify a field to be used as the
basis of the sort. Simply enter the number corresponding
to the field you are interested in. For example, to
reorganise your database in alphabetical order by name,
enter "1".

GO TO FIRST RECORD
When you trigger this option, a search is made for the
very first record that has been stored in your database,
and it is displayed on screen.

GO TO PREVIOUS RECORD

This calls up and displays the previous entry in your
electronic card index, and it can be used as many times
as you like to flick back through your data.

GO TO NEXT RECORD

The next page of your address book is revealed every
time you select this option.

GO TO LAST RECORD

By triggering this icon, the program jumps straight to
the very last record held on file and displaysit on screen.

PRINT RECORD

If you are lucky enough to have a printer, the [PRINT)
button is used to outputthe current record to the printer.

Chapter 15 HANDLING DATA

ADD A RECORD

Use this to create a new record in your filing system.
Add one now after the last record in your Database.

HELP
As you would expect from uS,a [Help] option is supplied,
just in case you need reminding how this program
works. The Help Screen has a synopsis of these
instructions. Press any key to return to the program.

EXIT

This option quits the program and returns to the Easy
AMOS Editor.

Add as many records as you like, and try out each of the
options. Data is written to the file as you enter your
records, and when you [Exit] from the program the file
is dosed, which makes sure that all of your data has been
saved. When you'vebuiltupyourowndatabase, trigger
[Exit] to take another look at the listing. As usual,
everything has been fully commented in the listing to
help you as much as possible. Go through the program
now, read the notes and identify exactly what each
routine does and how it works.

How about using all of your new knowledge to improve
this program? Here is a list of suggestions that you
might like to tryout:

- Add sound effects or speech, every time you
trigger an option or enter some data.

- Change the titles of the five fields, and create a
database for a library, a music collection, or
anything that takes your fancy.

263

Chapter 15

264

HANDLING DATA

Design your own Welcome Screen, and make it
appear every time you load your Database. Leave
it displayed for a few seconds, fade it, and then
reveal the Database screen.

- Make the program automatically remove any
commas from the fields, after they have been
entered.

- Create a screen prompt that asks you if you are
sure you want to quit, after clicking the [Exit!
option.

- Limit the number of characters that can be typed
into each field, by writing a procedure to replace
the Input command.

- Try to include a new [Delete! option that erases a
record, which may sound easy, but requires some
careful thought.

Finally,rememberthatyourDatabasefileswillbecrcated
on the Ram disc, so copy your Database onto a suitable
floppy disc or hard drive, using the [Easy disc! option.
This will call up the Amazing Easy AMOS Disc Editor,
which is waiting to be introduced to you in the next
Chapter.

Chapter 16

PERIPHERALS,
DRIVES AND
DISCS
o joysticks

o the mouse

o printers

o disc drives

o listing files, paths, directories

o selecting and naming files

o running programs from disc

o the Amazing Easy AMOS Disc Editor

"Plug me in.
Let's go
to work!"

(Jane Fonda, 1981)

265

Chapter 16

JOYSTICKS

"One stick of jay
surmounts one
mile of grief· "

(Rabelais, 1564)

266

PERIPHERALS, DRIVES AND DISCS

This chapter deals with the various devices that can be
connected to your computer, often called "peripherals"
or "add-ons". This includes joysticks, mouse controllers
and printers. It will also cover all the instructions for
gaining access to disc drives, disc directories and files.

A joystick can be used to control movement around the
screen by pushing its handle in the required direction,
and to trigger all sorts of actions by pressing one or more
fire-buttons built in to its mechanism. There are two
sockets in the back of an Amiga computer, marked "I
JOYSTICK" and "2 JOYSTICK", either of which will
happily accept a joystick plug. If two users want to
control one joystick each for specially written programs,
both ports can be used.

To make a joystick interact with your programs, the
computer needs to be able to read its movements. Easy
AMOS has two useful functions that do just that.

=JOY

This inspects what's happening to thejoystick and makes
a report. You have to tell the computer which port the
joystick is plugged into. If it's plugged into the joystick
port, the computer will expect to look at number (1), and
if you are using the mouse port, call that number (0), for
example:

Irff" Do

J=Joy (1)

Print Bin$(J,5),J

Loop

Try running that routine now, and see what reports are
given when you move the joystick and press its fire
button. The report you get back is given as a "binary"
pattern, in other words, it's made upof a pattern of Zeros
and ones. Ifanyof the bits in the report is shown as a one,

Chapter 16

THE MOUSE

PERIPHERALS, DRIVES AND DISCS

it means that the joystick has been moved in the direction
that relates to that bit. Here' sa list of those bits, and what
each of them means:

Bit number

=FIRE

o
1

2

3

4

Meaning

Joystick has been moved Up

Joystick has been moved Down

Joystick has been moved Left

Joystick has been moved Right

Fire-button has been pressed

If you just want to set up a test to see if the fire-button has
been pressed, use the Fire function followed by the
joystick port number. A value of-l will be given only if
the fire button on the relevant joystick has been pressed.

trY'Do

F~Fire (1)

If F~-l Then Centre "Bang!"

Print

Loop

Shoot

Joysticks have become associated with playing computer
games, whereas the mouse is more often used in practical
programming, but they both do much the same thing.

The mouse cursor has been programmed to look like a
pointer arrow, but if you don't like its appearance you
are most welcome to change its shape. There are three
standard shapes to choose from, with index numbers
from 1 to 3, as follows:

267

Chapter 16

268

PERIPHERALS, DRIVES AND DISCS

Number Shape of cursor

1 Arrow pointer

2 Cross-hair

3 Clock

CHANGE MOUSE
To change the shape of the pointer arrow, use this
command followed by the number of the shape you
want, for example:

II:G" Do

For N~l To 3

Change Mouse N

Wait 50

Next N

Loop

There is no need to restrict your choice to these three
shapes. If you select an image number greater than
three, Easy AMOS will look at whatever Bobs are sitting
in their bank, and use oneofthem. The first image in the
bank can be called up by using Change Mouse 4, the
second by specifying number 5, and so on.

To use Bobs effectively, they must contain no more than
four colours, and they have to be exactly 16 pixels wide,
although any height is allowed.

HIDE
HIDE ON
Use this to hide the mouse pointer completely, by making
it invisible. It is still working and sending back reports,
but you can't see it. Easy AMOS will automatically

Chapter 16

"A Mouse who
laughs has a
hole nearby. "

(Nigerian
proverb)

PERIPHERALS, DRIVES AND DISCS

count the number of times you use the Hide command,
and use this number to SHOW the mouse pointer again
at your command. If you prefer to keep the mouse
pointer invisible all the time, you can use a special
version of the Hide command that is always On, like
this:

Hide On

SHOW

SHOW ON

This makes the mouse pointer visible again. The system
counts the number of times the Hide command has been
used, and shows the pointer on screen again, when the
number of Shows equals the number of Hides. To
bypass the counting system,and reveal the mouse pointer
immediately, use Show On.

~Hide

Wait 100

Show

Whether the mouse pointer is visible or not, the computer
has to know two things in order to make any use of the
mouse. It must know where the mouse pointer is at any
time, and if any of the mouse buttons have been pressed.

=XMOUSE

=YMOUSE

This pair of functions report the current location of the x
or y-coordinate of the mouse pointer. Because movement
is controlled by the mouse rather than by software,
coordinates are given in what is known as "hardware"
notation. So, if you need to know the x-coordinate of the
mouse, for example, use X Mouse like this:

~ Print X Mouse

269

Chapter 16

270

PERIPHERALS, DRIVES AND DISCS

You can also use these functions to set a new coordinate
position for the mouse pointer, simply by giving X
Mouse or Y Mouse a coordinate value. For example, if
you want to change the existing y-coordinate, use
something like this:

IG1" y Mouse~150

Print Y Mouse

=MOUSEKEY

The Mouse Key function reads the status of the mouse
buttons, and reports back with a binary pattern made up
of these elements:

Pattern Report

Bit 0 Left button

Bit 1 Right button

Bit 2 Third button, if it exists

As usual, the numbers zero and one make up the report,
and the bit will report back by displaying a one if the
relevant button has been pressed, otherwise it will display
a zero. Try this routine:

IG1" CUrs Off

DO

Locate 0,0

M=Mouse Key

Print "Bit Pattern ";Bin$(M,8);"Nurrber ",M

Loop

Supposing you want to set up a control panel on your
screen, and don't want the mouse pOinter to go
wandering outside the area of that panel.

Chapter 16

PRINTERS

"Printing makes
knowledge a
slave. "

(Napoleon
Bonaparte, 1804)

PERIPHERALS, DRIVES AND DISCS

LIMIT MOUSE

This sets up a rectangle for the mouse pointer to move
around, and traps it inside the area set by hardware
coordinates, from the rectangle's top left To bottom
right-hand comer. For example:

~ Limit Mouse 5,5 To 205,105

If you need to give the mouse pointer freedom to move
around the entire screen, use the Limit Mouse command
on its own without any coordinates, like this:

~ Limit Mouse

Printing text and graphics on screen and looking through
your programs during editing is easily done, but if you
are lucky enough to use a printer it's just as simple to
print out listings on paper.

LPRINT

This is used in exactly the same way as the Print
command, but it sends a list of variables to a printer
instead of the screen. If you have a printer connected, try
this:

n:::ir" Lprint "Print me on paper"

To print out program listings, first go into the Blocks
Menu. Now make a block of the program or of any part
of it that you want to print out, by clicking on the [Block
Start] and [Block End] icons. Then all you have to do is
click on the [Block Print] option.

To print all of an edited file, use [Ctrl]+[A] to make a
block of the whole file, and then [Block Print].

271

Chapter 16

DISC DRIVES

Identifying
floppy drives

Identifying
hard drives

Volume names

"There's nothing
magic about the
discs, they just
go round."

(John Lennon,
1968)

272

PERIPHERALS, DRIVES AND DISCS

Easy AMOScontainsa whole host of features for creating,
sorting and using the Amiga's electronic filing system,
including the Amazing Easy AMOS Disc Editor. As you
know, the Amiga normally has one built-in drive that
uses 3.5-inch floppy discs, and additional disc drives
can be connected to the machine using the correct sockets.

Each disc drive used by your computer is referred to by
a simple three letter code, followed by the colon character.
The internal floppy disc drive is identified like this:

DfO:

If you use additional floppy drives, they will be called
Dft:, then Df2: and so on.

Hard disc drives are identified by a similar code, with
the fist hard drive carrying a zero, the second a one, and
soon.

DhO:

The Amiga is quite happy to refer to an individual disc
by name instead oflooking for a disc drive code, as long
as the disc name carries the colon character, like this:

EASY AMOS:

The titles of discs are known as "volume" names, which
has nothing todo with sound levels, but is the equivalent
of the title of a written volume in a library. Whenever a
new blank disc is prepared, it is automatically given the
name "Empty", waiting for you to rename it with a
suitable title. It is not good practice to give several discs
the same name, as both the Amiga and its operator can
get confused by sloppy naming.

Chapter 16

Listing files

Paths

PERIPHERALS, DRIVES AND DISCS

As explained, you can think of a disc as a "volume" in a
library. That volume can contain one or more "folders"
of information, and each folder can hold all sorts of
ufiIes",

You should be familiar with sequential files and random
access files, which were dealt with in the last Chapter.
This section explains all the ways to manage your files
on disc from inside your programs, and then the last part
of this chapter will explain the Amazing Easy AMOS
Disc Editor.

Before any file can be accessed and used, it has to be
found in the file directory of its disc. Easy AMOS offers
some simple short cuts used to search the contents of a
disc and report back the findings.

DIR
This tells Easy AMOS to look through the directory of
the current disc and list all the files there. Try it now:

IGir' Dir

DIRIW

performs exactly the same task, but displays the list of
files in two columns across the screen. So by using this
double width you can show twice as many filenames on
screen at anyone time.

IGir'Dir/W

There's no need for the Dir command to list every file on
the disc. Certain groups of files can be extracted by
telling Dir to search along particular "pathways".

273

Chapter 16

274

PERIPHERALS, DRIVES AND DISCS

The broadest of these paths gives the name of a disc or
the drive to beexamined. Always add a colon to the disc
name to prevent any confusion with the names of files,
like this:

Dir"FONTS: '

Dir"DfO: "

The next selective category that can be defined isa single
folder of filenames to be listed. For Example:

Dir"songs/"

Dir"Easy_Examples: Songs!"

The path for listing can be even further narrowed,
by setting up a set of conditions that must be
satisfied by each file to be printed. Each character
in the filename must match the characters in your
request exactly. Or if you want to make a more
general search, you can use the asterisk character
">,, to stand for the instruction "please match this up
with any list of characters in the filenames up to the
next control character." So that a file named "Music"
will be searched for if you command this:

But the use of an asterisk would have a different
effect, for example:

Rem List all files starting with M
Dir"M*"

That could give the following directory listing:

Music

Mel

Malapropisms

Chapter 16 PERIPHERALS, DRIVES AND DISCS

Similarly, the full-stop character "." matches a
filename extension, and is often used wi th the
asterisk character to list all the files in a directory
with a particular extension, like this:

Dir"* .Mel"

D · "* *" ~r .

Finally, you can use the question-mark character
"?" to match up with any single character in a
filename. For example:

Dir"EUROP????"

That would list the following filenames if they
were in the current directory:

EUROPRESS

EUROPEANS

But it would ignore these filenames, either because
the first five characters did not match, or the name
was longer than nine characters:

EUROPRESSES

EURIPIDES

EUROPA1992

Any of these listing processes can be stopped and
restarted by pressing the [Spacebar J. If any folders
appear in the listing, they will automatically be
marked with an asterisk, like this:

*AMOS

275

Chapter 16

276

PERIPHERALS, DRIVES AND DISCS

Because some filenames can be too long to fit neatly
on a display listing, especially if you are using the
Oir /W option, Easy AMOS offers a simple way of
setting the style of the directory commands.

SET DIR
This command must be followed by a number
ranging from one to 100, which sets the number of
characters in each filename that will be displayed.
There is no effect at all on the names themselves,
only the way in which they are displayed. For
example:

Set Dir 6

Dir

You can add a string to a Set Oir command, which
has the effect of filtering out pathnames from the
directory search. All filenames that match up with
this filter will be completely ignored. Supposing
your directory began like this:

AMO. IFF

AMAS

AMAT.IFF

AMINIBUS

AMINOACID

AMENSROOM. IFF

AMULET

If this Set Oir command was used, it would have
the following effect:

Chapter 16

Checking for
files

PERIPHERALS, DRIVES AND DISCS

Set Dir 3, "l!. IFF"

AMA

AMI

AMI

AMU

Some programmers have tidy minds and tidy desks.
They probably keep up-to-date labels on all of their
disks, and know exactly when they updated a file
and where they put it. On the other hand, they
could be normal. Anyone can lose track of
information, and Easy AMOS is ready and able to
help your memory. There are three different ways
to check and see if a file exists.

=EXIST
This looks through the current directory of
filenames and checks it against whatever filename
you are seeking. If the names match up, then the
file exists and a report of -1 will be given for "true··.
If the file does not exists a zero will be reported,
meaning "false".

As well as individual filenames, Exist will happily
check out all sorts of search requests, such as
checking to see if a disc drive is connected and
ready for operation or whether a particular disc is
available for use. It will also look for gibberish
without flinching. Here are some examples:

Print Exist ('Dfl~) : Rem External drive

Print Exist ("I don't feel very well")

Print Exist ('MUSIC:") Rem Music disc

277

Chapter 16

278

PERIPHERALS, DRIVES AND DISCS

Here is a practical example:

If Exist ("AMOS Disc .AMOS") Then Edit

=DIR FIRST$
This function provides a string containing the name
and the length of the first file on the current disc
that matches up with your chosen search path. For
example, the next routine would tell you the name
of the first file or folder in the directory, followed
by the name of the first IFF file in the directory.
Obviously this could be the same file.

IJj;P Print Dir First$ ("*. *")

Print Dir First$ ("*. IFF")

Every time you use Dir First$, the whole directpry
listing gets loaded into memory, so you can go on
to discover the name of the next file in the current
directory with the following function.

= DIR NEXT$
Will return the name that comes after the file or
folder found by the previous Dir First$ search. If
there are no more files to come, a string containing
nothing will be given, so you would see this "".
Once the last filename has been found, Easy AMOS
will automatically grab back the memory that has
been used by these routines, and release it for the
rest of your program to use. This example will
print every file in the current directory:

IJj;P F$=Dir First$ ('* . *")

While F$<>""

Print F$: Wait 50

F$=Dir Next$

Wend

Chapter 16

Selecting a file

Naming files

PERIPHERALS, DRIVES AND DISCS

=FSEL$
This is the file selection function that lets you
choose the files you want straight from disc, using
the normal Easy AMOS file selector. In its simplest
form, it can work like this:

F$~Fsel$ C'*. IFF")

The string given in brackets is a "path" which sets a
searching pattern, in this case any IFF file. You
may also include the following options when using
Fsel$:

F$~Fsel$(path$,default$,titlel$,title2$)

The default string is used to choose a filename
which will be automatically selected if you press
[Return] and abort the process.

Titlel$ and Title2$ are optional text strings that set
up a title to be displayed at the top of your file
selector. For Example:

F$~Fsel$ ("Easy_ Exanples: Bobs/* . *" ,"" :Bobs")

Rem Return to editor if no file selected

If F$~"" Then Edit

Rem Load file and display first Bob

Load F$,O

Bob 1,100,100,1 : Get Bob Palette: Wait Vbl

To create a new folder that can be used to hold a file
of computer data, a suitable disc should be ready in
the appropriate drive.

279

Chapter 16 PERIPHERALS, DRIVES AND DISCS

MKDIR
This makes a new folder on the current disc, and
gives it the filename of your choice. For example:

Mkdir "DfO :DIETCHART"

RENAME
This command is used to change the name of a file
from an old name To a new name. If your choice of
new filename already exists, Easy AMOS will
remind you with a "file already exists" error
message. Rename a file like this:

Rename "Oldnamestring" To "Newnamestring"

Erasing files KILL

Running
programs from
disc

280

Be careful with this one. It obliterates the named
file from the current disc, once and for all. The file
that is erased with this command cannot be brought
back.

Kill "Filenamestring"

RUN
Aswellasthe[Run]or[Fl]facilityforexecutingyourprograrns
from the Edit Screen, you can type in the Run command from
Direct Mode.

When followed by a file name and used in your program
listings, this command is incredibly useful. Supposing you
have writtenahugecomputergarne that uses several diffamt
levels of play, taking up the wholeofonediscand using much
more memory than is available in your Amiga. Each level of
playcanbe written as a separateprogrnm, and then saved asa
different file name, then at the end of one level your next stage
of play can be automatically loaded from the disc, like this:

Run ~Nextlevel. AMOS
g

Chapter 16 PERIPHERALS, DRIVES AND DISCS

This rrethod is known as "chaining" programs together. When
prognuns are run like this, data SCl"fCl1S will be kept, allowing
you to display a screen of graphics while the next level is
loading, but the last program will be erased to make room for
the next program so any variables will be lost.

COMMAND LINE$

In fact, Easy AMOS does allow you to pass data from one
programtoanotherbymakinguseofCommandLines",sothat
hi-scores, names and messages can be carried through to the
next level of a romputer game. Following are two example
programs. Type in Program 1 and then save it on your
"My_Programs" disc,givingit the followingnarne:

Programl.AM)S

IJ:Y'" Rem Program 1

Screen Open O,640,200,4,Hires

Rem Greetings sent by previous program

Print "Greetings from 2:" iCommand Line$

Input "Input greetings!"; A$

Command Line$~A$

Print "Running program 2!"

Wait 100

Run "My_Programs :Program2 . AMOS"

When you have saved that, change your program as
follows:

281

Chapter 16

282

PERIPHERALS, DRIVES AND DISCS

~ Rem Program 2

Screen Open O,640,200,4,Lowres

Rem Greetings sent by previous program

Print ~Greetings from 1 :"iCommand Line$

Input "Input greetings!"; A$

Command Line$~A$

Print "Running program l!"

Wait 100

Run ~My _P rograms : Programl . AMOS"

Save Program 2, and call it:

Program2.AMOS

Now run Program 2, which is still in memory. After the
first blank greeting, the two programs will greet each
other until you break with [CtrJ)+[C).

If you've used the File Selector, and Bob Editor and
Sample Bank Maker, you already know that Easy AMOS
has packed an incredible amount of useful material onto
its Programs Disc. There's more! What if all your disc
editing needs could be catered for by calling up another
Easy AMOS edit screen? Here it comes.

The last part of this chapter is a guided tour of the
Amazing Easy AMOS Disc Editor. Call up the System
Menu from the Edit Screen now, by pressing the right
mouse bu tton, or holding down a [Shift) key, and select
[Easy Disc), or press [Shift) and [FBI together.

Chapter 16

THE
AMAZING
EASY AMOS
DISC EDITOR!

PERIPHERALS, DRIVES AND DISCS

You'll probably be able to use the Disc Editor without
much help from another guided tour, but read through
this as you go along to get the most outof all the features.

The Amazing Easy AMOS Disc Editor is a superfast way
of organising all the files on your discs. If you've
upgraded to an extra disc drive it is incredibly useful,
but single.<Jrive users will find it a superb tool as well.
The main concept tha t you have to understand is that all
the files on a SOURCE disc can be reorganised and
copied to a DESTINATION disc. Here's a view of the
Disc Editor Screen:

283

Chapter 16 PERIPHERALS, DRIVES AND DISCS

The screen has two main display zones, clearly headed
"Source" and "Destination", with all the DiscEditorcontrol
buttons in a stack, between the the two zones. The zone
that is currently active has a red bar highlighting its path
name, and information about this active path isdisplayed
in a line at the bottom of the screen. Nothing will be
displayed here if the path name is not valid. As usual,
your mouse is used to control the buttons and sliders.

Click on either the [Source] or [Destination] headings to
select one of these zones, or simply click anywhere in
either of the large display zones which display a list of
any directories and files on your Source and Destination
discs.

Entering a path To enter a path name, click on the appropriate name
name panel, then type in your string of characters from the

keyboard. If an empty string is entered, the current
directory is used as the path name. To abort the process,
press IEsc].

284

The path names of your Source and Destination MUST
be different, and it is always good practice to give each
of your discs a different name to avoid confusion.

Next to the path name panels you can find up/down
buttons for displaying any lists of files that are too long
to fit into the Source or Destination windows. Below
these buttons are normal sliders, if you prefer to use
them. You can get a continuous scroll of file names
towards the mouse cursor, by using the RIGHT mouse
button.

Chapter 16

Selecting files

PERIPHERALS, DRIVES AND DISCS

You've already come across a [PARENT] option in the
Easy AMOS File Selector, and each path has its own
parent button to allow rapid access back to a parent
folder after searching through its files. To get into a sub
directory, all you have to do is make two clicks on the
folder name you want to open.

Another similarity to the File Selector is the way you
display the "device" list, by clicking with the RIGHT
mouse button in the active path panel. The available
devices (eqUipment for communicating with your Amiga,
such as disc drives) will be listed at the top of the
window zone. One more click with the RIGHT mouse
button will make the device names disappear. To select
a device for use, simple click on its name.

To select a file or a directory, place your mouse cursor
over its name and click. That's it. De-select by clicking
on another file or folder.

The vertical panel of control buttons is used to handle
files. here's how.

[ALL] is a short-cut button that selects all of the files
listed in the active path, ready for handling.

[CLEAR) performs the opposite task to [ALL]. It de
selects all of the files in the active path.

There can be files on your disc that end with an • .info' tag
and the [Info] button acts as a switch to turn them on or
off in the zone window. You can still copy these files,
even if they're not on display, for example, if you are
copying entire discs.

285

Chapter 16

Copying Files

286

PERIPHERALS, DRIVES AND DISCS

Files are displayed by name, followed by their length in
bytes. If you want to tum off the display of their lengths
because the file names are too long for example, the
[Size] button acts as a switch to tum them off and on.
Even if a file name is shortened in the display, names of
up to 64 characters long are still valid. Click on it now,
and then redisplay the file lengths with another click.

The little [Flip] button does a big job. It flips both
directories over, so that Source becomes Destination,
and the old Destination directory becomes the new
Source. Try it out now. Note that the active path stays
active after a flip.

Pressing the information button [???] will display the
EASY Disc credits.

Now let's get down to the business of using the Amazing
Easy AMOS Disc Editor for handling files. To copy one
or more files or directories, first go to the Sourcedirectory
and select one or more of the file names you are interested
in. Don't forget, if the files you want to copy are
currently displayed in the Destination directory, use the
[Flip] button to swap it into your Source.

Now click on the [COPY] button. The Disc Editor will
tell you how many files and directories are to be copied,
and it will also calcula te if there is enough space available
in the Destination directory. It does NOT take into
account any space that might be saved by files that you
want to overwrite. A Ram disc grabs memory when it
needs space, so you can ignore any reports on disc space
in this case.

Chapter 16

P.~NAt·1~

IDH~HI

11AK~ DIF:

PERIPHERALS, DRIVES AND DISCS

Pressing [Copy] again will kick off the copying process.
The Disc Edi tor will create any directories needed on the
Destination disc, then it loads up as many files as it can
from the Sourcedisc into the computer's memory, before
saving them on the Destination disc.

If you are using more than one disc drive, the process is
incredibly easy. For those of you only using the internal
floppy disc drive "0£0:", your screen will tell you when
to swap over your discs.

The Disc Editor is not just concerned with copying file s
r
r

from one disc to another. It can perform much simple
tasks. Suppose you want to change the names of one 0

more files. Select them with your mouse and then c1ic k
on the [RENAME] button. You will be asked to type i n

r and enter the new file names one by one through you
selected list. Press the [Esc] key to halt the process at an y
time.

To erase one or more files from the disc, select thei r
u names in the usual way and click on [DELETEl. A men

will appear, showing the files and directories to be
deleted. You nOW have the following choices:

[DELETE] erases the next file only.

[SKIP] jumps over the next file, leaving it on your di sc.

[DEL ALLl will get rid of all the selected files, so be
n

se
careful when using this very powerful option. You ca
stop the deleting process with a click of the mou
button.

[ABORT] halts the deleting process, and takes you bac k
to the Disc Editor screen.

This is a very simple way of making a new directo ry.
e Click on [MAKE D1R] and then type in the name of th

new directory you wish to create.

287

Chapter 16

Hm~ BIG~

Examining files

288

PERIPHERALS, DRIVES AND DISCS

To find out the size of files and directories, select their
names and click on the [HOW BIG?] button. You will
now be told exactly how big the selected files and
directories are, in total bytes.

This is a brilliant service, brought to you as part of the
Amazing Easy AMOS Disc Editor, and you must try it
out now. Select as many different files as you like, and
click on [EXAMINE]. Easy AMOS will now take a look
at each file in tum and see if it can recognise them.

It does this by loading a part of each program, and as
soon as it gets recognised you will be presented with
different options to either [DISPLA Yl, [HEARl, [READ]
or [PRINT] the file, depending on what type it is. This
will help you to examine the contents of your discs very
quickly, while you are reorganising your discs or just
browsing through them. Here's a list of the typesoffiles
that will be recognised.

IFF pictures and Easy AMOS packed pictures:

When these sorts of pictures are recognised, you are
given the option to [DISPLAY] them. The displayed
picture will remain on the screen until you press a
mouse button.

Bob banks:
If you choose to [DISPLAY] a Bob bank on the screen, it
will appear in a reduced size on the screen to remind you
of an the images stored in the bank.

Ascii text files:

Two choices are offered here. You can either [READ] a
text that has been saved in this format, or [PRINT] out
the file.

Chapter 16

Formatting
discs

PERIPHERALS, DRIVES AND DISCS

IFF samples, Easy AMOS music and sample banks,
Soundtracker modules:

If any of these are recognised, you will be asked if you
want to [HEAR] them. IFF samples will be played at
their original frequency, but you can set a new frequency
if you wish. Music banks will be played exactly as they
were saved. When you [HEAR] a sample bank, the
samples will be played one after the other, although you
can select any individual sample and change its playing
speed. Soundtrackermodules will be recognised as well
as most raw samples.

There are no options provided for the following sorts of
files:

IFF music, AmigaDos executable programs, AMOS banks
or programs.

Obviously, Easy AMOS has been designed to cater for
all your programming needs without ever having to
leave the system and go wandering off to less friendly
regions like the Workbench. All the way backatthe Easy
AMOS installa tion process, you were asked if you wanted
to format a blank disc, and now you are given the
opportunity to format discs any time you like. When
[FORMAT] is selected, you will prepare your new disc
in this logical order:

[NAME]: click on this, and then set the name of yournew
disc.

[OFx]: choose the name of the drive you want to use for
formatting the disc. For example, if you are using the
internal floppy drive, select "0£0".

[VERIFY ON] or [VERIFY OFF]. To make sure that your
new disc has been formatted perfectly, it will be "verified"
after formatting. You can switch this process off if you
like, and disc formatting will be twice as fast.

289

Chapter 16

Copying discs

IDISKCO~YI

290

PERIPHERALS, DRIVES AND DISCS

[FORMAT]: now everything is set up, simply click on
this option to fonnat your disc. You can [ABORT] the
process at any time.

A disc that can be loaded and run as soon as it is popped
into a disc drive has to be "installed" first, otherwise you
will need a separate program to "boof" it up. You can do
this from the Amiga's CLI, but we want you to stay
inside the Easy AMOS system instead. That's why
advanced users have been provided with the
[BOOT ABLE] option.

As well as providing you wi th the easiest possible disc
fonnatting, Easy AMOS allows you to make as many
copies as you like of entire discs, in much the same way.
After [DISC-COPY] is selected, these are the steps for
making exact copies of whole discs.

First select the name of the disc drive you want to use as
the SOURCE. Next, choose the DESTINATION drive
where the new copies will be made. Obviously if you've
only got the one internal drive at your disposal both of
these names will be the same!

Now choose the number of new copies you want to
make of the original Source disc. The Disc Editor will
ask for a new Destination disc after each copy has been
made, until all of your copies are done.

Select VERIFY ON or OFF, just like in the formatting
process. If the verification is ON, then the copying
process will be shown in blue on your screen and take
twice as long as with verification set to OFF.

Chapter 16

Changing
current
directory

PERIPHERALS, DRIVES AND DISCS

Finally, hit the [DISC-COPY] button and follow the
screen prompts. You'll be pleased to learn that the
Amazing Easy AMOS Disc Editor crunches down the
disc "tracks" into the computer's memory, to try and save
you the time and trouble of swapping over discs more
than necessary.

When you have explored the Amazing Easy AMOS Disc
Editor, and you are ready to moveon,all you have to do
is [QUIT]. But before you quit this Chapter, there's one
more feature that needs explaining. How to change
directories while editing your programs.

=DIR$

In fact, this keyword isa function as well asan instruction.
Dir$ can hold thed irectory name that will be used as the
starting point for further disc operations, like this:

IJ:Y> Dir$="DfO: Sounds!"

Print Dir$

This makes life easier, allowing you to Set directories
from direct mode.

291

292

Chapter 17

MEMORY

D addresses

D available memory

D allocating memory

D saving memory

D memory banks

D machine code

"Only with beauty
wake wild memories"

(Walter de fa Mare,
1943)

''[' II never forget
whatshisname. "

(Oliver Reed, 1967)

293

Chapter 17

COMPUTER
MEMORY

ROM and
RAM

Memory
gobblers

294

MEMORY

Computers have brains like new-born puppies. They
come to life with a few instinctive habits and remember
nothing, because their memories are blank. But
computers learn much faster than puppies. Their brains
are highly organised and ready to receive instant chunks
of information that can be handled in any order you like.

Computer memory uses two types of brain cells. In the
first type, instinctive habits are inherited at the factory
and buried in special memory cells. You can read what's
in these cells but you can't change the contents, so they
are known as Read Only Memory, or ROM for short. The
second type of brain cells are empty and waiting to learn
something new. This is where you plant fresh program
ideas and gain access to them as you choose, which is
why itiscalled the Random Access Memory, or RAM for
short. This type of memory gets erased every time the
machine is switched off.

The more you write Easy AMOS programs, the more
you'll appreciate that your talent is not restricted by
creativity, but by your computer's memory. Complex
Basic routines use a surprisingly small amount of
memory, but full colour graphics screens and hi-fi sound
samples gobble up great lumps of the stuff. When Easy
AMOSrecognisesacommand,itonlytakestheequivalent
of two characters' storage space, and all functions are
stored as two characters in memory, but other needs are
not so economic. Luckily, Easy AMOS helps you to
make the best possible use of the memory provided for
other sorts of information.

Chapter 17

Addresses,
bytes and bits

'Long whiskers
cannot take the
place of brains:

MEMORY

Puppies come equipped with memory storage units in
the form of brain cells, but it's difficult to gain acceSs to
specific cells and use them for specific tasks such as
fetching sticks. Your Amiga hasa more organised brain,
with each unit of memory living behind a numbered
door, called its 'address'.

(Boris Yeltsin,
1991)

Obviously, you need to know the correct door number
of the address to make contact with the data that lives
there. Address numbers start at zero, and go up to the
highest number in available memory. If no unit of data
has moved in to be stored there, the address remains
empty.

AVAILABLE
MEMORY

One unit of data living at an address in memory is
known as a 'byte'. Each byte can hold a number between ° and 255, which has nothing to do with the number of
its address, but gives the byte its own characteristics.

, Every byte is made up of eight smaller units of memory
):J called 'bits', and a bi t is the smallest speck of data thatcan

be represented in a computer's memory by a 1 or a 0.
Every computer leaves its puppy farm with a particular
size of brain, whose size is measured in "kilobytes", or k
for short. In actual fact, one k represents 1,024 bytes of
memory. So, for example, a machine that is said to have
512k on board isequipped with 524,288 bytes of memory
in its brain.

Every time you go into the Easy AMOS Edit Screen,
there are three numbers in the middle of the information
line concerning the memory available for use. The
whole line looks something like this:

I L:l C:l Text:32766 Chip:383416 Fast:240264 Edit:

295

Chapter 17

Memory Alerts

ALLOCATING
MEMORY

296

MEMORY

TEXT shows how much memory has been assigned to
the Text Buffer, in other words, how many bytes have
been allowed for the editor window. You can change
this allowance by clicking on the SEARCH MENU in the
top right-hand corner of the edit screen, followed bySET
TEXT Buffer. Simply type in the new amount of memory
to be allocated.

CHIP tells you how much memory can be directly
accessed by the Amiga's special brain cells held in
custom silicon chips. There are ways to increase this
value, which will be explained a little later.

FAST displays how much memory your computer has
been given for special rapid access. Easy AMOS will
always try and use this FAST memory before examining
chip memory.

When using the Bob Editor, Easy AMOS displays helpful
messages in the menu screen information line if the
available memory is getting low. Everything remains
normal as long as there is32k free. Between 24k and 32k,
a low-memory, three line, two colour file selector comes
into play. A constant alert message is displayed under
the editorfrom 12k to 24k. No drawing is allowed at all
if there is less than 12k of memory free, because Easy
AMOS does not want you to run out of memory!

One of the most frustrating things abou t trainingpu ppies
is their haphazard memory. Sometimes the Amiga can
be just as daft. It may display a message saying "Out of
memory", when it's plain to see from the information
line that there is plenty left. Just as the best way to train
your puppy is to begin the training session again, you
have to switch off your Amiga to unscramble its memory
before you can carry on. This is very annoying, so
always allocate enough memory before you begin to
program.

Chapter 17

Setting the size
of the variable
area

Finding free
memory of
variable area

Finding other
amounts of
available
memory

MEMORY

SET BUFFER

To reserve the maximum space for memory banks and
screens, Easy AMOS allocates a modest 8k for all your
variables. This can be increased to any level, depending
on how much memory your Amiga has on board. The
variable area must be set aside with Set Buffer as the very
first instruction in your program, followed by the number
of kilobytes you need. For example, if you want to
increase the variable area from 8K to 13k, make the first
line of your program:

Set Buffer 13

=FREE
To check how many bytes are left free to hold variables,
use the Free function:

Il:P" Print Free

Whenever FREE is called, Easy AMOS sets about cleaning
up the variable area to provide you with maximum
space. This iscalled "garbage collection", and is normally
done instantly. However, if the variable area is enormous,
garbage collection can take a few seconds, SO don't use
FREE where it can interfere with the rapid execution of
your program.

=FASTFREE

This function is called up to find out how many bytes in
the special Fast memory are still free to be used.

Il:P" Print Fast Free

=CHIPFREE
Gives the amount of free chip memory.

Il:P" Print Chip Free

297

Chapter 17

SAVING
MEMORY

Closing the
editor window

MEMORY
BANKS

Permanent and
temporary
banks

298

MEMORY

=DFREE
Returns the total amount of free space left on your
current disc, also measured in bytes.

n:::!?' Print Dfree

If you are lucky enough to have an extra 3.5-inch disc
drive plugged in to your Amiga, you are unlucky enough
to be handing over about 30k of memory for its use.
Obviously this memory can be grabbed back by
deactivating the external drive before using your
computer. But be warned, turning off this drive while
the Amiga is switched on will have no affect on memory
w ha tsoever.

CLOSE EDITOR
You can save 28k of memory without affecting your
listings simply by closing theeditor window while your
program is running. If there is not enough memory left
to reopen the window after you Close Editor, the current
display will be erased and the Default screen shown.
Simply hit the [Escape] key to get back to the Editor.

You have already been warned that graphics and sound
routines are memory gobblers. Their data has to be
stored along with the rest of your program, so Easy
AMOS has prepared 15 special chunks of memory for
their use. These are known as "memory banks".

There are two types of memory bank. Permanent banks
are defined once only, and are then always saved along
wi th your program. Temporary banks are freshly defined
every time you run a program. Here is a list of these
memory banks, numbered 1 to 15. The left-hand column
tells what sort of data can live there. The middle column
shows the number of the bank, and you can see that
certain items of data can only be held in banks 1 t04. The
right-hand column indicates if the memory bank is
Permanent (P) or Temporary (T).

Chapter 17

"Memories are
made of this. "

(Val Doonican,
1967)

Reserving a
bank

MEMORY

Data Bank State

Bob definitions Bank 1 ONLY P

AMOS music data Bank 3 ONLY P

Sample data Bank 5 default P

Chip workspace Banks 1 to 15 T

Chip Data workspace Banks 1 to 15 P

Fast Memory workspace Banks 1 to 15 T

Fast Memory Data workspace Banks 1 to 15 P

Tracker music data Banks 1 to 15 P

You may remember learning how to allocate memory
for detecting movement using Reserve Zone in Chapter
9. In much the same way, a memory bank must be
reserved before it can be used. Easy AMOSautomatically
allocates certain banks, but the Reserve As command
allows you to create any other memory banks you need.
Each of the following commands must be followed by
the number of the memory bank, a comma, then the
length you want in bytes.

RESERVE AS WORK banknumber, length

reserves the stated numberofbytesforuseas a temporary
workspace. Easy AMOS always tries to allocate Fast
memory for this job, so avoid bringing it into contact
with any instructions that need to access the Amiga's
blitter chip.

RESERVE AS DATA banknumber, length

reserves a permanent bank of memory of the required
length. This area of data will be allocated to Fast memory
where possible.

299

Chapter 17

Listing banks
in use

\. - ~~ ~ ..

~-J ~v

. D\--

Erasing a bank

300

MEMORY

RESERVE AS CHIP WORK banknumber,length

allocates a workspace of the number of bytes you need
using chip memory.

RESERVE AS CHIP DATA banknumber,length

reserves the length of bytes of memory required from
chip memory. The bank will be saved along with AMOS
programs automatically.

LIST BANK

Use this instruction to find out which memory banks are
currently reserved, what type they are, the start of their
location and their length. The start and length are given
in a number code known as "hexadecimal", which is
explained later on, and your listing will look something
like this:

Number

1

2

ERASE

Type

Bobs

Work

Start

S:$040F60

S:$05F7AO

Length

L:$OOOO2F

L:$014000

Some people say that you can't teach an old dog new
tricks, but there is no such problem when your puppy
programs begin to grow up. If you need to clear any
memory banks in order to load in new data, use this
command followed by the number of the bank to be
erased from 1 to 15, like so:

Erase 9

Chapter 17

Saving memory
banks

Loading
memory banks

MEMORY

SAVE

Before clearing out memory banks and loading in new
data, you will want to store your old data and keep it
safe, so try saving memory banks onto disc. To show
that thissortoffilecontainsa memorybank,alwaysstick
"abk" on the end of the file name, which is short for Easy
AMOS memory BanK:

Save "filename. abk"

This will take all of the currently defined memory banks
and save them to one file on your disc. If you want to
save one particular memory bank, simply add its bank
number after a comma, like this:

Save nfilename.abk",n

LOAD

Now you need to learn how to load up new memory
banks, and as you would expect, AMOS makes it easy.

Load Nfilename.abk"

will erase all current memory banks and replace them
with all of the banks held in the named file. If there is
only one bank held in the named file, then that bank will
be replaced and the others left alone. To insert new data
into a particular memory bank, add the number of the
bank that is your new target destination, like this:

Load "f ilename. abkN

, n

If you leave outthe number of a target memory bank, the
replacement data will be automatically loaded into the
bank from where it originated. Bob banks are treated
differently. If the bank number n is zero, or left out
altogether, the new sprite data will overwrite all of the
old sprite data. If any of the bank numbers from 1 to 15
is used, the old data will be kept and the new data will
be added to it. In this way, several sprite files can be
combined.

301

Chapter 17

Finding bank
parameters

MACHINE
CODE

"Welcome to
the machine!"

(Pink Floyd,
1975)

302

MEMORY

Ambitious programmers may want to have direct access
to data held in memory banks, and Easy AMOS is
willing to help out.

=START
reveals the address in memory where the bank starts.
For example:

~ Reserve As Work 3,2000

Print Start (3)

List Bank

=LENGTH

returns the length of a specified memory bank, in bytes:

~ Print Length (3)

If a result of zero is returned, then the bank does not
exist. If it contains sprites, then the number of sprites
will be returned instead of its length.

Huge amounts of memory can be saved and programs
can be speeded up if Basic keywords and routines are
bypassed, and direct communication established with a
computer's brain. The set of instructions used by
microprocessor chips is called . Machine Code', and
programs can be written for these chips in 'assembly
language'. This type of program has to be coded into a
sequence of bytes using an 'assembler', and there are
loads of ready-made software packages on the market.
If you want to code them yourself, there are several
excellent books that will teach you how, and this isn't
one of them! But Easy AMOS is quite prepared to cater
for your needs if ever you become a Machine Code
expert.

Chapter 17

Converting
numbers

Hexadecimal
conversion

Binary
conversion

MEMORY

You can safely ignore the rest of this chapter until the
time ever comes when your puppies grow into wise old
dogs.

Easy AMOS can convert familiar numbers into two
other forms that are recognised by more advanced
computer programs. Because human beings have got
hands with ten digits, we have developed a system of
counting using ten as the base. Butcomputerssometimes
use a system with a base of 16 using letters as well as
numbers, and this is known as "hexadecimal" notation.
Alternatively, there is a system that uses a base of only
2 (either 0 or 1), called "binary" notation.

=HEX$
converts an integer into hexadecimal. You can specify
the number of characters to be returned by following the
integer with that number. Here are some examples:

ICV' Print Hex$ (65536)

Print Hex$(65536,8)

Print Hex$(Colour(1),3)

=BIN$
converts a number into a binary string. You can choose
whether to output all the digits of the number or only a
few, from 1 up to 32 digits. Binary numbers are given the
% character as a prefix. Try these:

ICV' Print Bin$(255)

Print Bin$(255,16)

303

Chapter 17

Saving binary
memory blocks

Loading binary
memory blocks

Peeking and
poking

304

MEMORY

BSAVE
saves an unformatted block of memory in binaryformat.
It is used like this:

Bsave "filename", Start (15) +Length (15)

so that the memory stored between Start and the end of
Length is saved to "filename", in this case the data in
memory bank 15. Bsave must not be used for sprite or
icon banks, because their data is not stored as a single
block of memory.

BLOAD

loads a file of binary data off disc without affecting the
data in any way. It can load data to any given address,
or to any numbered memory bank, provided that the
memory bank has been reserved and contains enough
memory.

Bload file$, address

Bload file$, bank

The process of discovering which byte is living at a
particular address is called taking a "peek", and always
gives a result from 0 to 255. Similarly, changing the
value of a byte at a specific address is known as having
a "poke". This is a rapid but often dangerous way of
manipulating memory.

=PEEK

returns the byte stored at a given address:

Print Peek (address)

POKE

shoves a number between 0 and 255 into the specified
address:

Poke address, number

Chapter 17

Deep peeking
and long
poking

Finding the
address of a
variable

MEMORY

=DEEK

reads a two-byte word living at an EVEN address number
only.

Print Deek (even numbered address)

DOKE

loads a two-byte number between 0 and 65535 into the
memory location at a given address.

Doke address, number

=LEEK

works in the same way as DEEK, but returns a four-byte
word.

Print Leek (even numbered address)

LOKE

copies a four-byte number to a specified address.

Loke address, number.

Needless to say, inexperienced programmers should
take great care when poking, doking and loking.

=VARPTR

will return the address of the three types of Basic variable.

String variables: the address points to the first character
of the string.

Integers: the address of the four bytes containing the
variable is given.

Floating point numbers: the address of the four byte
"Fast Floating Point Format" is given.

305

Chapter 17

USING
MACHINE
CODE

Loading
machine code

Calling
machine code

306

MEMORY

We think that Easy AMOS is so powerful, you will not
need to complicate things by using assembly language.
The commands are hazardous to use and should be
avoided. But if you insist on being reckless, the final
section of this chapter has been provided. To combine
assembly language routines with your AMOS programs,
you are welcome to wade through what may seem like
gibberish. You have been duly warned!

PLOAD

is used to reserve a specified memory bank and load it
with a machine code program:

PLOAD "machine code filename", bank

The code can contain almost anything, provided that it
is completely relocatable and ended by a single RTS
instruction.

CALL

calls up and then execu tes machine code from an address
or a memory bank.

Call address, parameters

Call bank/parameters

The address can be a specific location or the number of
a memory bank already created with Pload. Get back to
Easy AMOS Basic using an RTS instruction.

·Parameters· refers to those parameters which will be
pushed into the stack, and because they will be pulled
out in reverse order remember that the last parameter
you enter will be the first one on the stack!

Chapter 17

Talking to
registers

"Memory? Well,
I never forget
a face. But in
you r case I'll
make an
exception. "

(Groucho Marx,
1965)

MEMORY

AREG

is an array of three pretend variables used to pass on
information to the computer's address registers.
Whenever Call is used, the contents of this array is
loaded into address registers AD to A2. When the
function is over, they are saved back along with any new
information that has been placed in these registers.
Registers r can range from D to 6, as in:

a~AREG(r)

AREG(r)~a

DREG

is an arrayof eight integers that holds a copy of the data
registers, with r referring to the register numberranging
from D to 7 (01 to D7 respectively.) It can be taken for
walkies like this:

d~DREG(r)

DREG(r)~d

307

308

Chapter 18

DEBUGGING
ERRORS

o bugs

o spotting mistakes

o HELP

o trapping errors

o error messages

"Anyone can make
mistakes, but
only an idiot
persists in his
error. II

(Cicero,44BO

309

Chapter 18

SPOTTING
MISTAKES

"Tis not enough
to help the
feeble, but to
support him
after. "

(William
Shakespeare

'Timon of
Athens')

HELP

o
310

DEBUGGING ERRORS

Some people call them glitches, or gremlins, but most of
us call programming mistakes 'bugs'. These little devils
are the software errors that are responsible for messing
up our programs. They may be a simple keystroke that
has been typed in by mistake, or a command that we
forgot to include, or some crazy task that the computer
cannot cope with. It is up to us to identify exactly where
they are lurking and what they are doing before we can
obliterate them. This is known as 'debugging': the
process by which we trap errors in our programs.

Whenever a mistake is made in Easy AMOS
programming, or when you ask your Amiga to do the
impossible, Easy AMOS does its very best to offer first
aid, automatically. Easy AMOS not only helps you to
spot the error but also tries to explain what it is, where
itis, what problems are being caused and how to find the
solution. Special messages appear on your screen to
point out what is going wrong and where the error is, in
the form of an error message followed by the line number
where the error lives. If this happens while you are
programming, you can try to cure the bug immediately.
If it happens while you are testing or running your
program, Easy AMOS will take you straight to the
offending line as soon as you edit.

In the next Chapter you can learn all about the Easy
AMOS TUTOR program, which has been carefully
designed to help Easy AMOS programming. You can
also ask for [Help] while editing your programs, as
explained way back in Chapter 3. When you ask for
[Help], Easy AMOS will tell you about the current
instruction in an information window on your screen. If
you prefer, you can read exactly the same information
by lookingupany Easy AMOS instruction in Chapter 20:
the Glossary.

Chapter 18

TRAPPING
ERRORS

"There are few
errors ever
avoided."

(Winston
Churchill, 1945)

DEBUGGING ERRORS

ON ERROR
You can lay plans for handling program errors by telling
Easy AMOS that if a mistake crops up then it should go
to a special error-handling routine and trap the bug.
Error trapping swings into action with the ON ERROR
command, and is called up like this:

ON ERROR GOTO label

Whenever a bug occurs in your Basic program, Easy
AMOS will jump straight to whatever label you have
defined, and this will act as the starting point for your
own error correction routine. You can then fix the bug
and return safe and sound to your main program. In this
way, mistakes can be repaired without the bother of
returning to the editor window. You must use RESUME
to get back to your program, and this is explained a little
later. Take a look at this simple routine:

IIff'Do

Input "Type in two numbers";A,B

Print Ail! divided by ";8;" is ";A/B

LoOp

This will work perfectly until you try to enter a value of
zero for B,and Easy AMOS discovers thatitis impossible
to divide A by zero. Similar problems can be catered for
in advance by setting an error trap, like that on the
following page:

311

Chapter 18

"Napoleon
learned from his
mistakes how to
make new ones. "

(AJP Taylor,
1963)

312

DEBUGGING ERRORS

trY' On Error Goto HELP

AGAIN:

Do

Input MType in two numbers"; A, B

Print A;" divided by ";B;" is ";A!B

Loop

Rem Error Handler

HELP:

Print

Print "I'm afraid you are trying to"

Print "divide your number by zero. n

Resume AGAIN : Rem Go back to input

If you are ever unfortunate enough to write an error
inside your own error trapping routine, Easy AMOS
will grind to a halt in revenge! There are two ways to
deliberately disable ON ERROR GOTO. Either use ON
ERROR GOTO 0 or call it without any parameters, like
this:

On Error:Rem disable error trap

RESUME

Never use GOTO to get back to your Basic program after
an error handler, the correct method is the use of
RESUME. On its own, RESUME will jump back to the
statement which caused the error and try it again. If you
specify a line number after RESUME, as in the above
example, RESUME will jump back to that line.

Chapter 18 DEBUGGING ERRORS

ON ERROR PROC

You can also trap an error using a procedure. ON
ERROR PROC selects a named procedure which is
automatically called if there's an error in the main
program. In fact, it is a structured version of the ON
ERROR COTO command.

Your procedure must be terminated by an END PROC in
the usual way, and then you'll need to return to the main
program with an add itional call to RESUME, which can
be placed just before the final END PROC statement.

Here is an example:

IUr' On Error Proc HELP

Do

Input "Type in two numbers";A,B

Print Ai divided by ";B;" is ";A/B

Loop

Rem Error Handler

Procedure HELP

Print

Print "I 1m afraid you are trying to"

Print "divide your number by zero."

Resume Next: Rem Go back to input

End Proc

313

Chapter 18

ERROR
MESSAGES

314

DEBUGGING ERRORS

=ERRN

If you use ON ERROR to create your own error handling
routines, you will want to know exactly what sort of
error has happened in the main program. Errors
discovered while your program is running each have
their own ERRor Number, and the number of the last
error to be spotted will be returned with the use of the
ERRN function in your routine:

n~ERRN

All these errors and their numbers are listed below.

Easy AMOS uses three sets of error messages to help you
correct your programming mistakes. Editing messages
may appear while you are in themiddleofprogramming.
Program messages can crop up when you test your
work. Run time messages come complete with their
own number code, and they pinpoint errors while your
program is up and running. Here is a list of all the error
messages that Easy AMOS may try and help you with,
as soon as a programming mistake is picked up.

Chapter 18 DEBUGGING ERRORS

EDITING ERROR MESSAGES
While you are editing programs, the following messages may appear on the
information line of your screen to help you.

Bottom of text
The text cursor has come to the last line of the current program.

Can't fit program into editor buffer
There is not enough space in memory to load the current program. When Easy
AMOS asks you for a response, select NO to abort the load and the information
line will display the minimum buffer space that is needed, or YES will set the
text buffer to the exact size of the program you are trying to load. Alternatively,
use S.BUFFER in the SEARCH menu to expand the text buffer.

Line too long
The maximum number of characters in a line is 255.

No errors
Plain and simple: no errors have been detected in the current program during
the testing process.

Not found
The last search command has failed to find what it was seeking.

Not marked
You are trying to move to a marker, but have failed to set it in advance.

Not a procedure
You are trying to use FOLD/UNFOLD, but the text cursor is not positioned
over a procedure.

Out of buffer space
There is no space left in the editor area. SAVE your program first, and then use
S.BUFFER in the SEARCH menu to expand the buffer. Overlong programs
can also be split into segments and then RUN one after the other.

Out of memory
Your current program has used up all available memory. Using CLOSE
WORKBENCH can restore 40k, and saving memory is fully discussed in
Chapter 17.

315

Chapter 18 DEBUGGING ERRORS

Syntax error
The current line of your program is wrongly written. You must use the correct
"grammar" or syntax as explained in this book.

Too many direct mode variables
Normally, you can create up to 64 new variables in direct mode. If your
program is using too much memory, space in the variable table will be more
restricted.

Top of text
The text cursor has come to the first line of your current program.

Variable name buffer too small
You have christened your variables with too many long names.

What block?
You must define a block before you can CUT or PASTE it.

PROGRAM ERRORS

Easy AMOS wants to help you to get rid of as many errors as possible while
editing, otherwise you would have to wait until your program was executed
before any errors became obvious. Here is a list of messages that can spot
errors when you [TEST] your program from the MENU window. They may
also appear when the program is [RUN].

Array already dimensioned
You are trying to dimension an array that has already been dimensioned.

Array not dimensioned
You must give an array a dimension before you can specify it.

Bad structure
You have left part of a loop outside of its nest. Any nested loops must be
carried completely inside their parent loop.

Can't open narrator
Easy AMOS cannot find the required library file from the program or hard disc
in order to load up the narrator program.

316

Chapter 18 DEBUGGING ERRORS

DATA must start at the beginning of a line

You must put a DATA statement at the very beginning of a line. The only
exception to this rule is when you define a LABEL.

DO without LOOP
You have forgotten to end your DO structure with its LOOP command.

ELSE without ENDIF
You have forgotten to end an IF test with its ENDIF command.

ELSE without IF
You can only use an ELSE statement inside an IF test.

ENDIF without IF

You have used an ENDIFcommand but there is no IF statement for it to refer
to.

FOR without matching NEXT

You are trying to use a FOR command, but there is no NEXT statement to
follow it.

IF without ENDIF

When you are setting up a structured IF test, you must end it with a single
ENDIF statement. This sortofiF test is completely different from an IF/THEN
command.

Illegal number of parameters

You are trying to enter the wrong number of values into an instruction or a
procedure.

LOOP without DO

You have written a LOOP command, but there is no DO statement at its start
to trigger it off.

Label defined twice
Labels and procedures can only be defined once in each program.

317

Chapter 18 DEBUGGING ERRORS

Music bank not defined
The music number you are seeking is not in the current music bank.

Music bank not found
There is no musical bank.

NEXT without FOR
You have forgotten to precede a NEXT instruction with its FOR command.

No THEN in a structured test
You cannot use IF/THEN inside a structured test, but you can use IF /ENDIF.

No jumps allowed in the middle of a loop!
You can only jump out from a loop once you are inside of it. You cannot jump
into a loop using a COTO or COSUB statement.

Not a packed bitmap
You are trying to UNPACK a databank that is not in bitmap format.

Not a packed screen
You are trying to UNPACK data that is not in packed screen format.

Not enough loops to exit
You have specified a larger count of loops than the number of active loops
available in your EXIT or EXIT IF command.

Out of memory
There is not enough memory available to create the variable name buffer.
Shorten the names or get some more memory.

Procedure's limits must be alone on a line
All PROCEDURE and END PROC statements must begin on their own line.

Procedure not closed
You have forgotten to end one of your procedures with an END PROC
statement.

Procedure not opened
There is an END PROC statement in your program, but its PROCEDURE has
not been defined above.

318

Chapter 18 DEBUGGING ERRORS

REPEAT without matching UNTIL
There is a REPEAT instruction in your program, but there is no UNTIL
statement to go with it.

Sample not defined
You are trying to play an audio sample tha t does not exist in the curren t sample
bank.

Syntax error
Thecurrent line of your program is wrongl y written. You must use the correct
"grammar" or syntax as explained in this book.

This array is not defined in the main program
You are trying to access an array inside a procedure, but you have forgotten
to dimension it in the main program.

UNTIL without REPEAT
You have programmed an UNTIL command that does not refer to a previous
REPEAT statement.

Undefined label
Your program is trying to find a label that you have forgotten to specify.

Undefined procedure
You are trying to call up a procedure that does not exist.

Variable buffer can't be cnanged in the middle of a program!
Apart from a REM statement, the SET BUFFER command must always be used
as the very first line of your program.

Variable buffer too small
While Easy AMOS is testing your program, it is possible that the area reserved
for variables can overflow. If there is enough memory available, use SET
BUFFER to expand this area.

WEND without WHILE
There is no WHILE command to go wi th your WEND statement.

WHILE without matChing WEND
There is no matching WEND statement to go with your WHILE command

319

Chapter 18 DEBUGGING ERRORS

RUN TIME ERROR8

If Easy AMOS trips over a mistake while your program is running, it will
instantly grind to a halt and the offen<'ing instruction will corne under the
spotlight with its own error message. As soon as you go back to editing your
program, the cursor automatically leaps to the line where the error is lurking.
These run time errors each have a special code number which is displayed in
brackets immediately after the error message, and these code numbers can be
very useful if you are using error trapping. For example, you may want to find
the error message that goes with a particular codenumber, by using a line such
as:

Error Errn

Address error (25)
You are trying to read an odd address in a DEEK or LEEK command, which
must always be even. Similarly, OOKE and LOKE cannot load these addresses.

Array already dimensioned (28)
You have tried to dimension the same array more than once.

Bad IFF format (30)
LOAD IFF can only load IFF screens into memory, and not general purpose IFF
files.

Bank already reserved (35)
You have tried to create a memory bank that already exists.

Bank not reserved (36)
You are trying to select a bank, but you have forgotten to RESERVE it. This
error message can also result from certain commands trying to use data from
a specific memory bank automatically, such as SAMPLAY.

Block not found (65)
You cannot specify a block without first creating it, using GET BLOCK.

Bob not defined (68)
You cannot manipulate or PASTE a bob without first setting it up with a BOB
command.

320

Chapter 18 DEBUGGING ERRORS

Can't fit picture in current screen (32)
You have tried to use LOAD IFF to load a picture into an existing screen of a
different type. Easy AMOS will automatically create a screen of the correct
type if you specify a screen number in the correct range of 0 to 7. You should
tag the number of the destination screen to the LOAD IFF command like this:

Load IFF "filename" , number

Can't resume to a label (4)
You cannot use RESUME label inside an error procedure.

Device not available (86)
You have specified a disc or a drive but your Amiga does not believe that it
exists, possibly because you have changed a disc unexpectedly. You can set
the directory to the correct drive wi th an instruction such as:

Dir$="DfO: "

Directory not empty (85)
You can only erase EMPTY directories by using KILL.

Directory not found (80)
Easy AMOS cannot find the required directory on the current disc. List it and
check its contents.

Disc full (88)
There is not enough space on your current disc to hold your data.

Disc not validated (83)
This is the Amiga talking directly to you, and you have probably twisted its
knickers by inserting a perfectly valid disc that it cannot come to terms with.
Don't panic. Try again. If all else fails, try using DISC DOCTOR from the
standard Workbench disc, although we really hate the idea of you leaving
Easy AMOS.

Disc is write protected (84)
The disc's write protection tab is "on" . If you want to save your data on the
current disc, remove it, slide the write protection tab to "off and try again, or
use another disc.

321

Chapter 18 DEBUGGING ERRORS

Division by zero (20)
You are trying to divide a number by zero, and that is impossible.

End of file (100)
The end of the current file has been reached unexpectedly while the disc is
being accessed. You should use the EOF function to test for this condition from
inside your program.

End of program (10)
Easy AMOS has executed the last instruction in your program.

Error not resumed (3)
You have come out of an error-handling routine, but forgotten to reset the
error using RESUME.

Error procedure must RESUME to end (8)
You cannot exit from an error-handling procedure using END PROC, use the
RESUME command instead.

Out of stack space (0)
There are too many procedure calls nested inside one another. Al though Easy
AMOS procedures can call themselves up, this error may occur after about 50
loops. The same can happen with the COSUB command.

File already exists (79)
You cannot RENAME a file with the same name belonging to another file or
directory on your current disc.

File already opened (97)
You cannot OPEN or APPEND a file that is already open.

File format not recognised (95)
The LOAD command can only be used to load Easy AMOS files fromdisc. Use
BLOAD for files stored in standard Amiga format. Use LOAD IFF for Iff
screens.

File is protected against deletion (89)
There is an Amiga security command to stop accidental wiping of important
system files, this is the PROTECf command to be found on the CLI. You have
probably just tried to DELETE one of these protected files.

322

Chapter 18 DEBUGGING ERRORS

File is protected against reading (91)
You have requested a file that has been protected from your prying eyes. The
PROTECT command is on theCL!, and is explained in the Amiga User'sGuide
that you ignored when you unpacked your computer.

File is write protected (90)
Youaretryingtochangea file that has been locked with the PROTECT security
command.

File not found (81)
You have tried to call up a file or a directory that does not exist within the
current directory.

File not opened (97)
You must use an instruction like OPEN IN, OPEN OUT or APPEND to open
access to a file before you can use it to transfer data.

File type mismatch (98)
You have used a command that is not allowed with the current file. For
example, GET and PUT will not work with sequential files.

Flash declaration error (52)
There is a mistake in the animation string that defines a FLASH colour
sequence.

Fonts not examined (37)
You must first create a list of the available fonts using GET FONTS before you
can use the SET FONT command.

I/o error (94)
The input/output error implies that there is a corrupted file that cannot be
accessed properly. Try again, checking any disc drive connections that may
be faulty. If necessary, you may have to resort to the DISC DOCTOR program
supplied on your original Workbench disc.

IFF compression not recognised (31)
You are trying to load a screen that has been compressed with an unfamiliar
system. You should try and re-save your original screen source in standard
IFF format.

323

Chapter 18 DEBUGGING ERRORS

Illegal block parameters (66)
The values you have entered in a GET BLOCK or PUT BLOCK command are
not allowed.

Illegal file name (82)
You are trying to use a non-standard file name.

Illegal function call (23)
You have made a mistake with the values inan Easy AMOS command. Return
to the editor, and identify the likely command in your line of program.

Illegal number of colours (49)
You are trying to use the wrong number of colours on screen at once. Check
your syntax if you have used SCREEN OPEN, or see Chapter 8 for the list of
colour options.

Illegal screen parameter (48)
You have specified dimensions using SCREEN OPEN that are not acceptable.
Your minimum screen size can be as small as 32x8,and the maximum is 1000
pixels wide.

Input too long (99)
Either your input string is too long for a previously dimensioned variable, or
you have tried to INPUT# a line of more than 1000 characters.

Label not defined (40)
You have included a label in an instruction, but forgotten to define it. Check
for mistakes in GOTO, GOSUB or RESTORE statements.

No ON ERROR PROe before this instruction (5)
You can only use RESUME LABEL after an ON ERROR PROC command.

No data after this label (41)
You cannot RESTORE the data pointer to a line with no DATA statements on
that line or subsequent lines.

NO disc in drive (93)
Your Amiga does not believe that there is a disc in the drive you are trying to
access. Try again.

324

Chapter 18 DEBUGGING ERRORS

NO zone defined (73)
You cannot use SET ZONE without first allocating enough memory with
RESERVE ZONE.

Non dimensioned array (27)
You are trying to refer to an array, but it has not yet been defined.

Not an AmigaDOS disc (92)
Easy AMOS can only read discs created on an Amiga. If you want to use discs
that are of compatible size but originate from another sort of computer, you
will first have to use specialised software to translate your data.

Out of data (33)
You may have omitted some information from one of your DATA lines,
because a READ command has gone past the last item of DATA in the current
program. Alternatively, there may be a typing error in a RESTORE command.

Out of memory (24)
Your Amiga thinks that it has run out of available memory storage space. If
your information line assures you that there is plenty of sparememory,simply
save your program, re-boot and load it back in again. CLOSE EDITOR will
save a further 40k by deactivating the editor window when you are not using
it.

Out of variable space (11)
Normally, Easy AMOS allocates 8k of storage space for your strings and
arrays. To increase variable space, use the SET BUFFER command at the
beginning of your program.

Overflow (29)
The result of a calculation has exceeded the maximum size of a variable.

Program interrupted (9)
You have pressed the [Cntr!] and [Cl keys at the same time, to exit directly from
your program. This is an information message, not an error.

RETURN without GOSUB (1)
RETURN can only be used to exit from a subroutine that was Originally
entered with a GOSUB.

325

Chapter 18 DEBUGGING ERRORS

Rainbow not defined (75)
You must define your rainbow effect using SET RAINBOW before you canca II
it up.

Resume label not defined (6)
The label you have specified in a RESUME command does not exist.

Resume without error (7)
The RESUME command cannot be executed unless an error has cropped up in
your program.

Screen already in double buffering (69)
You are trying to call DOUBLE BUFFER more than once on the same screen.

Screen not opened (47)
You must open a screen with the SCREEN command before you can access it.

String too long (21)
Easy AMOS allows a maximum of 65000 characters in any string.

Too many colours in flash (51)
There is a maximum allowance of 16 colour changes in a single FLASH
command.

Type mismatch (34)
You have assigned an illegal value to a variable.

Valid screen numbers range from 0 to 7 (50)
There is a maximum of eight screens that can be opened at anyone time.

256 characters for a wave
Audio waves can only be created by a list of 256 bytes.

326

Chapter 19

THE EASY AMOS TUTOR

o the graduation challenge

o calling the tutor

o the tutor screen

o the control keypad

o how the tutor works

o evaluating expressions

"A tutoris
better than
any book."

(Confucius, 490 BO

327

Chapter 19

THE TUTOR

328

THE EASY AMOS TUTOR

Do you think you've learned everything Easy AMOS
has to offer? This is the last Chapter featured in our very
own "game show' that tests your knowledge of Easy
AMOS. 'Challenge AMOS' is to be found on your "Easy
AMOS Tutorial" disc, and if you haven't already played
it, treat yourself to an audio-visual extravaganza by
loading:

Challenge.AMOS

It's even better than being on a TV quiz show, because
when you have proved your knowledge, you will become
a genuine Easy AMOS Graduate. Full details on your
Graduation Screen! The Challenge questions start on
subjects that are covered way back near the beginning of
these pages, all the way through to this Tutor Chapter.
And don't worry if you get the answers wrong, because
you can play the Challenge as many times as you like.
All the answers are to be found somewhere in this book,
and we wish you every success and look forward to
welcoming you on your Easy AMOS Graduation Day!

You are corning to the end of your course in Easy AMOS
programming, and we hope that you've found it clear,
easy and entertaining. There's one more feature to help
you monitor your new knowledge, and we've saved the
best until last! If you want to become an Easy AMOS
Graduate, you need a Tutor.

A tutor is a personal teacher who is employed to educate
and guide a student. Ideally, a tutor should be available
at all times to help the student understand anything
from basic words to complex ideas. This book can help
you in most cases, but it can never get inside your own
programs and explain what's going on. Believe it or not,
Easy AMOS can!

Chapter 19

Calling the
Tutor

THE EASY AMOS TUTOR

The Easy AMOS Tutor is a very simple idea, but it's
incredibly powerful. You can call it up and use it to
examine any Easy AMOS program, any Easy AMOS
routine or even a single expression, and find out exactly
what's happening, and why.

To call up the Easy AMOS Tutor from the Editor simply
click on the [Tutor] option in the Default Menu, or hit the
[F6] key.

TUTOR

Tutor is also a command in its own right, and can be
typed from Direct Mode, or included anywhere in your
program listing. When called from inside one of your
Easy AMOS programs, this command stops the program
and summons up the Tutor screen. The tutoring process
will then start from the location immediately after the
Tutor command, ready to step on through your program
one instruction at a time. For example:

~ Print "Time to call the Tutor!"

Wait 100

Tutor

Print "THIS IS IN THE NEXT INSTRUCTION"

Before the next instruction is executed, Tutor takes you
straight to its own screen, which is a monitoring system
completely controlled by the mouse. You don't even
have to type anything in! Try to resist the temptation to
start experimenting just yet. Let's go on a proper guided
tour by analysing a more complex program.

Trigger the quit icon [Q] in the top right-hand corner of
the push-button control keypad on the Tutor Screen,
and load up one of the games from your "Easy AMOS
Examples" disc now, such as:

Tricyle_Ball.AMOS

329

Chapter 19

Scpeen B
Fo~ S:8 To 1

, Hlt

330

THE EASY AMOS TUTOR

[Run] or [Fl] the game, to remind yourself how it looks.
After the title sequence, let the game play in Demo
mode. Break into the game with [Ctrl]+[C] and then
press [Spacebar] to return to the editor.

Now trigger the [Tutor] option or press [F61. and the
Tutor Screen will appear, looking something like this:

Chapter 19

Graphic output
window

Control keypad

THE EASY AMOS TUTOR

The window in the top left-hand quarter of the Tutor
Screen is used to display the graphic output of the
current program screen, with the Screen Number
displayed above it. It reduces Lowres screens to exactly
half of the original size, so that a 320 x 200 screen fits
perfectly into this window. If a screen is larger than this
default size, you can explore it using the four directional
arrOw buttons in the push-button panel. Hires screens
are NOT reduced, and you can look around them using
the direction arrows as well.

All colour animations such as Flash and Fade will be
shown during the monitoring process. If the current
screen features more than 16 colours, then colours 16 to
31,32 to 47 and 48 to 63 will each be converted to colours
o to 15,so HAM pictures may well produce some bizarre
results!

Now try clicking with the left mouse bu tton in the
Graphic Output Window, and you will be returned to
the original program display for as long as you hold
down the button. This is a very useful service, to remind
you of exactly what's on the screen you are dealing with

Each of the push-buttons in the control keypad is
triggered via the mouse.

Scrolling the screen output
Thefourdirectionalarrowsareused to scroll the reduced
screen in the graphic output window. Try scrolling
down and back up again. The central button in this
group selects the screen to be displayed starting from
Screen zero and then in order through any additional
screens. Flick through the screens now, until you get
back to Screen zero again.

331

Chapter 19

I INIT I

How the Tutor
works

332

THE EASY AMOS TUTOR

Initialising the Tutor
This is the Initialisation button, and it has exactly the
same effect as using [Run] from the Editor. Firstly, a
[Test] of the program is performed. If Easy AMOS
comes across an error, the faulty line will be displayed in
a display window at the bottom of the screen. If the
[Test] proves successful, and there are no errors to be
reported, a [Default] command will be given to the
display, and a program pointer will be initialised at the
first instruction in the program. If you are using
"Tricycle _ Ball.AMOS" to test with the Tutor, chances are
that no errors will be reported!

If you don't click on the [INIT] button first, you will not
be able to check through the program's instructions step
by step.

The Easy AMOS Tutor has been designed to perform all
of these useful tasks:

To look at the instructions in your program, one at a
time, and to display a report showing the result of
what happens when its parameters have been
evaluated. In other words it can test out any
instruction in the program.

To display Help information about any instruction
you select.

To supply you with the result of any expression in
your program where possible. If there is an error in
the expression, the offending line will bernarked out.

- To provide error message reports.

The Tutor uses two windows, which take up the bottom
half of the Tutor Screen. The upper window displays the
program listing and the lower window provides all the
information on offer.

Chapter 19

Changing the
window
displays

THE EASY AMOS TUTOR

The Program Listing Window

This window gives you a view of the current program
listing. You can look at it, and mark out items to be
examined, but you can't change anything in it. Once the
Tutor has been [INIT)ialised, helpful markers will be
shown in the program listing to remind you of the
fonowing points:

The current program location is marked by a black
CURSOR with three little arrow-heads. It always
appears before theNEXT instruction to be examined.

- You are allowed to set a "break point" in the listing,
and these will be marked in INVERSE VIDEO.

Any item that you want information about will be
UNDERLINED.

The Information Window

Thisis where all theTutorinfonnationappears. Itstartsoffby
displayingthenextinstruction tobeexamined,butastheother
Tutor features come into play, infonnation is displayed in the
fonowing order, from top to bottom in this window:

Error messages

Information on instructions

Information on expressions

Next instruction to be examined

First parameter of the next instruction

Second parameter, and so on.

Scroll bars are provided to move the display of the program
listing, vertically and horizontally in the Program Usting
Window. The "centre" button at the top right-hand comer of
the Program Usting Window is used to centre the display on
the NEXf instruction to be executed. A vertical scroll bar is
also available for the Infonnation Window.

333

Chapter 19

334

THE EASY AMOS TUTOR

If you click on the line between the Program Listing
Window and the Information Window you can enlarge
one window and reducetheothertoa minimum of three
lines. Simply drag the window boundary up and down
to change size.

Let's examine the bottom line of buttons on the control
keypad next.

One step control

Clicking on this button tells the Tutor to examine the
next instruction, give a report and then go back and wait
for your next action. The black program cursor will now
be pointing to the next instruction, and the Information
Window will also show the next instruction and give its
parameter list, if there is one.

Slow-run control

When you trigger this button, the Tutor will interpret
instructions one at a time, and redraw the whole display
after each examination. By using this option you can
follow the progress of the program listing in "slow
motion". To stop the slow-run, click on the stop button.

Stop button

The stop button brings the interpretation process to a
halt, and returns you to the Tutor. Pressing [Ctrl]+[C]
has the same effect, and so does a "break point" which is
explained in a moment. If a non-trapped error is corne
across, it will be displayed in the Information Window
and you will also be taken back to the Tutor.

Normal-run control

This button will [Run] the program from the Tutor and
update the display every 50th of a second, allowing a
faster speed of operation. To stop the process, use the
stop button.

Chapter 19 THE EASY AMOS TUTOR

Fast-run button

When fast-run is used, the program's own display is
used and it is [Run] at full speed. If an error is not found,
the only way to come back to the Tutor during a fast-run
is to press [Ctr\] and IC] together, or use break points.

How to set a break point
Click on the break point button with the left mouse
button as usual, then click on the instruction in the
program listing wherever you want to set the break. The
instruction will be highlighted in inverse video.

The evaluation button

The button marked [VAL] allows you to use a very
accurate setting for the evaluation process. Click on the
button and then use your mouse to set the precise
character that marks the beginning of the expression
you want to evaluate. With the button held down, drag
it to the character in the listing to mark the end of the
expression you are interested in, and release the button
to underline the expression. That's it. The evaluation
will be reported in the Information Window.

Calling for Help!
You need help? You get help! Click on the help button,
click on the keyword you need help with to underlineit,
and the trusty Easy AMOS Help Window will appear at
your service.

Quitting the Tu tor

This button takes you back to the Editor. If the system
has been called up from inside a program using the
Tutor command, you'll be returned to the program at
the instruction immediately after that command.

335

Chapter 19

Evaluating
expressions

336

THE EASY AMOS TUTOR

The Tutor may be simple to use, but it is incredibly
skilful in the way it analyses expressions and reports the
results back to you. Here are the ground rules for a
simple demonstration. Run this example to give yourself
something to work on, then call up the Tutor:

lIP'" A~l : B=2 : C~3

D=A+B*C-l

Print D

Firstly, the program must be initialised. So press the
[INIT) button. Secondly, the expression must be valid,
so if you press [VAL) and asked foran evaluation of A+B
without initialising B, then you would be asking for the
impossible! Also, if you ask for an evaluation of "*", you
will told that it's impossible toevaluate something that's
plainly idiotic. On the other hand if you ask for an
evaluation of something obvious like "1 ", it will be given.
Lastly, the expression must be at the same level of
procedure as the program pointer.

With the black program cursor still on the first line of the
program listing. Trigger [VAL) andaskforanevaluation
of D by clicking on "D" in the last line of that example.
Result zero! D will only be equal to A+B*C-l when all
the expressions have been evaluated.

Ad vance the process by one step, and the cursor moves
to the next expression on the first line. Now advance two
more steps, and get the correct evaluations for A, Band
C from the second line of the program. D will still come
back as zero. But by advancing another step, D is given
as6.

The [Spacebar) can be used as a keyboard short-<:ut, to
advance a single step every time it is pressed.

Chapter 19

"School's out!"
(Alice Cooper,

1973)

THE EASY AMOS TUTOR

To get rid of an expression from the Information Window,
just click on it with the mouse cursor.

That was a very simple example, of course. But when
you are dealing with complex programs, you can use the
Tutor with the greatest of ease to extract all sorts of
interesting results from the expressions in the listing. Go
exploring one of the Easy AMOS example programs
now, and test out the Tutor on the juiciest expressions
you can find.

Happy Graduation Day!

337

338

Chapter 20

GLOSSARY

"[have a dream that
one day the words of
Amos will become
clear. "
(Martin Luther King,

1963)

339

Glossary

This Chapter is your reference guide to all the words, characters and
abbreviations you are likely to need when you use Easy AMOS. It includes all
the Easy AMOS instructions, functions, reserved variables, keywords and
controls, as well as technical terms, jargon and computer gobbledegook. The
easiest way to understand what these terms mean is to show them who's boss.
Use the commands fearlessly in your programming and see what happens,
because you can't harm your Amiga by experimental programming.

All the words and abbreviations that can be used in Easy AMOS programming
are printed in bold upper case letters, like this:
APPEAR.

If any of these headings is a function, it has an equals sign in front of it (and if
you don't know what a function is, look it up in this Glossary!). For example:

=ABS

Other words and jargon are shown in bold lower case, for example,
address.

Certain examples of the use of programming words are shown indented in a
different typeface, looking like this.

Print Asc {"A")

If any parts of the program examples are optional, in other words if you can
choose whether or not you want to leave them out, they are printed in italics,
like this:

Ink colour, paper, border

Obviously these are simplified examples, often using a Print statement for
instant understanding. All the uses and subtleties of the programming words
are to be found in their appropriate chapters.

When Amiga keys are indicated, they are shown inside square brackets, like
this:

[Escape).

340

GLOSSARY OF WORDS, CHARACTERS AND
ABBREVIATIONS

=ABS

Glossary

Gives the ABSolute value of a number, taking no account of whether it has a
positive or negative sign. The number must be in brackets.

Print Abs (-5)

abk
is short for Amos memory BanK, and is used as an extension at the end of a
filename to show that the file contains one or more memory banks, like this:

Save "filename. abk"

address
is where a unit of data has taken up residence in the computer's memory. It
is just like a human address, because you need to know the number before you
can make contact.

APPEAR

fades between two graphics screens. You must specify the numbers of the
source screen and destination screen, as well as the effect you want ranging
from 1 for a single pixel up to the maximum number of the pixels on your
screen. Finally, you can state what area of the screen is to be affected, by giving
the number of pixels from top to bottom of the screen.

Appear source To destination,effect,pixels

APPEND
adds information to the end of an existing sequential file, allowing you to
expand your file after it has been defined.

Append channelnumber,name$

AREG
creates an array of three "pseudo" variables, used to hold copies of the chip's
first three Address, REGisters AD to A2.

Areg(r)=a

341

Glossary

AS
please see RESERVE

=ASC
gives the Ascii code of a character.

Print Asc ('A")

ascii

stands for American Standard Codes for Information Interchange, a widely
used system of character codes for transferring data between computers, and
between computers and other machines like printers. It can also be written as
Ascii, or ASCII, but it is always pronounced "Asskcy".

=AT
is used to position text on screen from inside a character string.

T$=At (x, y) +"Moved Text"

AUTOBACK

sets the automatic screen copying mode. Mode number 0 sends all graphics
to the logical screen. Mode 1 performs each graphical operation to both the
physical and logical screens. Mode 2 (the default) combines all drawing
operations with the Bob updates.

Autoback modenurnber

BAR
draws a filled rectangle at the screen coordinates you want.

Bar xl,yl To x2,y2

Basic

nearly stands for Beginners All-purpose Symbolic Instruction Code, and is
still the single most popular computer language in the world. Easy AMOS is
a very friendly and very advanced version of Basic.

BELL

plays a tone of pure sound, from a low pitch ofl up to a very high pitch of 96.

Bell pitchvalue

342

Glossary

binary

is a system of numbering using only the the two digits 0 and 1.

=BIN$

converts a number to a BINary String. An optional length parameter can
dictate the number's format.

Print Bin$(number)

Print Bin${number,length)

bit

is the smallest piece of data that can be represented in the computer's memory
by a 1 or O.

bit-maps

and bit-patterns are little patterns of binary data consisting of a fixed number
of bits of memory that eontrol a specific item. You can select if the bits in the
pattern are set to a 1 or a zero, and this will change the way they control the
item.

blitter

is jargon for the Amiga silicon chip that can copy images to the screen at a rate
approaching one million pixels per second.

BLOAD

LOADs Binary data into a specified address or bank number.

Bload file$,address

bob
is short for BlitterOBject, a very fast-moving graphic image of up to 64 colours.
The only limit to the number of Bobs on display is the amount of available
memory.

BOB

draws a Blitter OBject at given coordinates on the current screen. The BOB
must have an identification number, followed by the screen coordinates and
its image number assigned from the memory bank.

Bob number,x,y,imagenumber

343

Glossary

BOB CLEAR

removes all active Bobs from the screen, and redraws the background graphics.
It is used with BOB DRAW (see below).

Bob Clear

=BOBCOL
detects COLlisions between the Blitter OBject whose identification number
you specify in brackets, with another BOB. If a collision happens, -1 will be
returned, if not 0 will be given.

c~Bob Col (number)

BOB DRAW

is used after a BOB CLEAR command, which removes all active Bobs from the
logical screen. BOB DRAW then lists all Bobs that have moved since the
previous update, saves the background beneath the new screen coordinates
and then redraws all active Bobs at their new positions on the logical screen.

Bob Draw

BOB OFF

removes a numbered Blitter OBject from the screen, or removes all Bobs if you
leave out the individual number.

Bob Off bobnumber

BOB UPDATE

BOB UPDATE OFF

affects Bobs drawn on the current logical screen at the next vertical blank. BOB
UPDATE OFF turns off any automatic screen switching operations and allows
Bobs to be redrawn at the required timing using BOB UPDATE. (See SCREEN
SWAP and VBL.)

Bob Update
Bob Update Off

344

Glossary

BOOM
generates an explosive sound effect.

Boom

boot

is computer jargon for kicking a program into action with a special start-up
routine. When a program runs simply by inserting the disc on which it lives
into the computer, it is said to "auto-boor.

BOX

draws a single lined rectangle at whatever coordinates you choose.
Box xl,yl To x2,y2

BREAKOFF
BREAK ON
turns OFF and turns ON the program-interrupt BREAK routine normally
activated by pressing the [Control]+[C] keys.

BSAVE
SAVEs a block of memory stored between a start and end location, to a named
file. The data is saved in Binary numbers with no special formatting.

Bsave file$, start TO end

buffer
is an area of memory set aside as a temporary store for data.

345

Glossary

bug

is a slang expression that refers to a mistake in a computer program, causing
problems when you try to TEST or RUN it.

byte
isa unit of computer memory made up of 8 bits, and it is large enough to store
one character, or a whole number <=255.

CALL

CALLs up a machine code program from an address or bank.

Call address

Caps Lock

is the key on the left side of your keyboard that locks input into capitols, or
upper case. It shows a red light when activated, and it can cause unwanted
characters if you hit it by mistake.

CENTRE
prints characters on the current cursor line at the CENTRE of the screen.

Centre uthis is in the centre"

CHANGE MOUSE

alters the MOUSE pointer on screen to a predefined numbered shape of 1
(arrow),2 (crosshairs) or 3 (clock). Numbers 4 and over use Bobs.

Change Mouse shapenumber

character set

In theory, there are 256 possible characters, each with its own Ascii code
between Oand 255. In practice, you can see the visible predefined character set
by running this:

For C=32 To 255 : Print Chr$(C);: Next C

=CHIPFREE

returns the amount of FREE CHIP memory.

Print Chip Free

346

Glossary

=CHR$
creates a String containing one CHaRacter whose Ascii code number is
specified in brackets.

s$~CHR$ (number)

CIRCLE
draws an empty CIRCLE with its centre at coordinates x,y and with a radius
r.

Circle x,y,r

Cli
stands for Command Line Interface, which allows you to pass commands
direct to Amiga DOS via the keyboard. Read your Amiga manual to learn
more.

CLIP

limits all drawing operations to a specified screen area, set by your chosen
coordinates.

Clip xl,yl To x2,y2

CLOSE

CLOSEs a given file number, or all files if the file number is omitted.

Close filenumber

CLOSE EDITOR
CLOSEs the EDITOR window while your program is running, saving 55k of
memory.

Close Editor

CLS
Clears all or part of a Screen in one of three ways: completely using the current
paper colour, completely using a numbered colour, or partially using a block
of colour inside given coordinates.

CIs

CIs colour

CIs colour,xl,yl To x2,y2

347

Glossary

=COL
tests the status of a Bob after a BOB COLlision instruction. -1 will be given if
a collision has been detected with the object whose number is specified in
brackets, otherwise 0 will be returned.

c=Col(bobnurnber)

COLOUR

changes a colour in the palette, by setting the strength of its Red, Green and
Blue components.

Colour indexnumber,$RGB

COLOUR BACK
changes the colour of the display where no screens exist (dead area).

Colour Back $RGB

command

is a word or short phrase like GET BLOCK and PLOT, used in a program asan
instruction to perform a specific task. It commands the computer to do a job.

COMMAND UNE$

is a reserved variable used to transfer a set of parameters from one program
over to another program. This can be used to carry over items such as a hi
score table.

Command Line$="Hi-score :+STR$ (HI_SCORE)

condition

is something that the program has to decide to be true or false before making
a decision.

constants

are numbers or strings that don't change during the course of a program. They
are always constant.

control codes

are special characters that do not appear on screen, but do have special actions
if printed or plotted.

348

Glossary

COpy

is used to move large chunks of Amiga memory from one location to another.
Set the start and finish address of the first and last bytes of your data, and then
give the destination address at which your new data is to be loaded. All
addresses MUST be even!

Copy start, finish To destination

=COS
calculates the COSine of any angle specified in brackets.

Print Cos (angle)

cosine
is the ratio of the length of the adjacent side to the hypotenuse, in a right-angled
triangle.

crash
is a slang expression for a computer program blowing its own brains out. If
this happens, a system error message appears on screen.

cursors
are indicators showing your current poSition on screen, like the small block in
a line you are editing, or the mouse pointer.

cursor keys
are the four direction arrow keys at the right of your keyboard, used to move
the program cursor around the screen, as well as to control movement during
gameplay or utilities. These movements can usually be duplicated using a
mouse or a joystick.

CURS OFF
CURS ON
disables and enables the flashing text CURSor of the current screen, without
affecting any other cursors.

349

Glossary

cut and paste
is the process of cutting out a block of text, graphics or program, and saving
it into memory for pasting somewhere else later on.

DATA

puts a list of DATA items into an Easy AMOS program, which can then be
load<.>d into one or more variables using the READ instruction. Each item must
be separated by a comma.

Data 1,2,3/Easy AMOS"

debug
is the slang expression for tracking down programming mistakes known as
bugs and correcting them.

=DEEK
reads a two-byte word at a given even address.

Print Deek(address)

DEFFN

creates a user-DEFined FunctioN, used for the quick calculation of values. It
must be given a name, followed by a bracketed list of variables separated by
commas. The expression can include any Easy AMOS functions, limited to a
single line of your program. (See FN).

Def Fn name(variables)=expression

DEFAULT

resets the display screen to its original DEFAULT setting of 320 pixels wide,
200 pixels high and 16 colours, and closes any other open screens.

DEGREE

uses DEGREEs for trigonometry, instead of the default setting which uses
radians.

Degree: Print Sin(45)

350

Glossary

degree

In geometry, one degree is the measure of an angle equal to one 360th of the
angle traced by one circular revolution of a line with one of itsends fixed to the
centre of that circle. The Amiga prefers to use radians instead of degrees and
one radian equals 57.296 degrees.

DEL BLOCK

DELetes specific screen BLOCKs when followed by the block's number, or
deletes all current screen blocks if not qualified by a block number.

Del Block number

DEL BOB

DELetes a numbered Blitter OBject from the memory bank.

Del Bob number

DEL WAVE

DELetes any numbered sound WAVE, except 0 and 1 which are permanently
programmed.

Del Wave number

DfO

is the recognised device name for calling the Amiga's internal floppy disc
drive. Additional floppy drives are called Dfl, Df2 and so on.

=DFREE
reveals the amount of Disc space FREE for use on the current device, in bytes.

Print Dfree

DhO

is the recognised device name for calling a hard disc drive, plugged into the
Amiga. Additional hard drives and/ or partitions will be called Dh 1, Dh2 and
so on. Some hard drives may have different device names, such as "work:".

DIM

DIMensions an array by defining a table of variables. The array's size
(DIMension) is set by values inside brackets.

Dim variable(x,y,z)

351

Glossary

DIR

prints out the DIRectory of files held on your current disc. Here are some
typical uses.

Dir "DfO:" : Rem List all files in internal drive

Dir HEasy_ Examples:" : Rem List all files on named disc

Dir "A*" : Rem List all files starting with A

Dir u*. *" : Rem List all files with an extension

DIRIW

prints out the DIRectory of your current disc in twin column Widths.

Dir /w "DfO:"

DIRECT

exits from the program and jumps to DIRECT mode. This helps with
debugging.

=DIR FIRST$

gives you a string containing the name and the length of the FIRST file in the
disc DIRectory.

Print Dir First$ ("*. *")

=DIRNEXT$

returns the NEXT filename in the DIRectory listing created by a DIR FIRST$
command.

F$~Dir Next$

=DIR$

creates a string which determines the name of the directory to be used as the
starting point for subsequent disc operations.

s$~DIR$

DIR$~s$

352

Glossary

disc drive

refers to the spinning read -write mechanism for the saving and loading of disc
data. Normally there is an internal disc drive on the right-hand side of your
Arniga, and additional drives can be added by plugging them in to the correct
ports of the computer. Please see DfO and DhO.

=DISPLAY HEIGHT
gives the HEIGHT of your screen DISPLAY in pixels.

Print Display Height

DO
acts as a marker to which a matching LOOP statement can return. To break out
of such loops press [Ctrl]+[C]. .

Do : Print "forever~ : Loop

DOKE
loads a two-byte number into a given address.

Doke address, value

Dos
is short for Disc Operating System, the program instructions that communicate
with computer discs.

DOUBLE BUFFER
creates a DOUBLE screen BUFFER, as an invisible copy of the current screen.
Please see SCREEN SWAP, LOGIC and PHYSIC.

DRAW
draws a line between the screen coordinates that you set. Parameters can be
omitted.

Draw xl,yl To x2,y2

DRAW TO
draws a line from the current graphic cursor location to the new coordinates
that you specify.

Draw To x3,y3

353

Glossary

DREG

is a variable used to pass infonnation to the Amiga's 68000 data registers.

d~Dreg (r)

EDIT

stops the current program and returns to the EDITor.

ELLIPSE

draws an outlined ELLIPSE at the coordinates you set, with a specified
horizontal and vertical radius.

Ellipse x,y,radiusl,radius2

ELSE

chooses between alternative actions in an IE .. THEN structure.

If condition Then statementl Else statement2

END

exits from the program, followed by [Space Bar) to return to the editor, or
[Escape) to jump to direct mode.

END IF

ENDs an IF condition inside a structured test.

If test : Goto Labell : Else Goto Labe12 Endif

ENDPROC

is used to mark the END of a PROCedure. Like PROCEDURE, it must occupy
its own line of program.

Procedure NAME

Print "Easy AMOS!"

End Proc

=EOF

tests to see if the End Of a File has been reached, returning -1 for yes and 0 if
this has not happened.

flag~Eof(channel)

354

Glossary

ERASE

deletes the contents of the memory bank whose number you specify.

Erase banknurnber

=ERRN

returns the identification Number of a programming ERRor. These numbers
are catalogued in Chapter 18.

Europress Software

is possibly the most exciting, dynamic, efficient, talented and far-sighted
software house in the galaxy.

=EXIST

checks to see if a file speCified inside brackets EXISTs, returning -1 for true and
o for false.

Print Exist ("filename")

EXIT

jumps out of a program loop created by DO ... LOOP, FOR. .. NEXT,
REPEAT ... UNTILorWHILE .. .wEND. Unless EXIT is qualified by the number
ofloops required, the innermost loop is the one that will act as the jumping out
springboard.

Exit loopnumber

Extra Half Bright mode

or EHB for short, is a special screen mode that allows 64 colours to appear on
screen instead of the normal 32 colours, by using existing colours to generate
new colours exactly half as bright as the originals.

FADE

blends one or more colours to new values, generating screen FADE effects.

Fade 15 : wait 225 : Rem Fade out all colour

Fade 15,$100,$200,$200,$300 : Rem create new palette

Fade speed To screen, mask

355

Glossary

where speed is the number of vertical blank cycles before the next colour
change, screen is the number of the screen whose palette is to be faded and
mask is an optional bit-pattern specifying which colours are to be changed.

=FASTFREE

returns the number of bytes of FAST memory FREE for use.

Print Fast Free

FIELD

defines a record up to 65535 bytes long, which can be used as a random access
file.

Field channel, length As fieldS

file

is self-contained,computerised data that can be saved in its own named folder,
just like a paper document.

FILL

is used to fill an area of memory with a four-byte FILL pattern. Setthe start and
finish address of the first and last bytes of the memory block to be filled, then
give the "long word" four-byte pattern which is to be copied into each group
of four memory locations between the start and finish addresses. All addresses
MUST BE EVEN!

Fill start To finish, pattern

=FlRE

tests the state of a joystick FIRE-button, returning -1 if a particular button
number has been pressed.

x=Fire (number)

FIX

FIXes the precision of floating point numbers, set by the number of decimal
points wanted, specified inside brackets.

Fix (numberdecimals) : Print Pi#

356

FLASH

FLASH OFF

Glossary

turns on and turns off a FLASHing colour sequence. The colour to be changed
is set by its index number and the sequence of its colour changes, held in sets
of brackets, with each new colour stored in RGB format, and colour change
delays set in 50ths of a second.

FN

Flash index," (RGB,delay) (RGB,delay)"
Flash Off

calls up and executes the user-defined FuNction by its name, followed by an optional variable list. (See Def Fn).
Def Fn name (variable list)=expression
Print Fn name (variable list)

font
describes the style and appearance of the letters, numbers and symbols as they
appear when printed on paper or your screen.

=FONT$
returns details about a specified design of numbers and letters known as a
FONT. Each font has its own number, and details are given as a string of 38
character codes. (See Get Fonts).

a$~Font$(number)

FOR
is used to kick off the repetition of a section of program FOR a specific number
of times. It is used with the distance command TO and the countingcomrnand
NEXT.

For x~32 To 255 : Print Chr$(x); : Next x

=FREE
returns the number of bytes of FREE memory available to hold variables.

Print Free

357

Glossary

=FSEL$
Opens the Easy AMOS File SELector from where a file can be chosen directly
from disc, with a search pattern set by your chosen path$. You may also choose
a default file name set by default$, and optional text strings to describe a file
name. All these choices must be separated by commas and held inside a pair
of brackets.

f$=Fsel$(path$,default$,titlel$,title2$)

functions
work on numerical values (called arguments) in order to give another value
(called the result), and they are used by typing in the name of the function
followed by the argument. Functions in this Easy AMOS Glossary are
preceded by an equals sign, like this: =FSEL$

function keys

are the two blocks of five keys each at the top of your keyboard, from [Fl] to
[FlO]. A full list of key uses can be found at the end of this Glossary.

garbage collection
is the slang phrase for cleaning up and reorganising free memory in the
variable area. It is usually performed automatically whenever the FREE
function is called.

GET
fetches a record number stored in an OPENed random access file, and loads
this record into strings created by FIELD.

Get channel,recordnumber

GET BLOCK
grabs a rectangular screen BLOCK number, of given coordinates from its top
left-hand corner to a given width and height in pixels, and puts the block into
memory. An optional mask can be created for the new block.

Get Block number,topx,topy,width,height,mask

358

Glossary

GET BOB

grabs a section from a screen of given coordinates and loads it into the Blitter
Object memory bank. An optional screen number can be given before the
image number.

Get Bob Screen number, image number,xl,yl To x2,y2

GET BOB PALETTE

loads all of your Blitter OBject colours to the current screen. An optional mask
can be used to load a selection of these colours.

Get Bob Palette, mask

GET FONTS
creates a list of all available fonts from a start-up disc.

Get Fonts

GET PALETTE

copies the P ALEITE colours from a numbered screen and loads them to the
current screen. An optional mask can be used to load a selection of these
colours.

Get Palette number, mask

GLOBAL
defines a list of GLOBAL variables that can be accessed from anywhere inside
your Easy AMOS program.

Global variable list

GOSUB

tells the program to GO to a SUBroutine, and must be qualified by a RETURN
statement. If the subroutine has a place marker known as a label, the label
name is always defined by tacking a colon on the end of its name.

Gosub n : Rem jump to subroutine at line n

Gosub label : Rem jump to this Easy AMOS label

Gosub e : Rem jump to label/line resulting from expr e

359

Glossary

GOTO

instructs the program to GOTOa specified new line number, label or variable.

Goto label

Gato linenumber

Gato variable

GRLOCATE

positions the GRa phicscursor at the LOCATion set by your chosen coordinates,
before you start a drawing operation.

Gr Locate x,y

GRWRITING

gives a choice of four alternative GRaphics WRITING modes, qualified by a
bitpattern. If Bit 0=0, only the graphics set to the current ink colour will be
drawn. If Bit 0=1, new images will completely replace existing images. This
is the normal setting. If Bit 1=1, new images will be combined with existing
images. If Bit 2=1, all new images will be drawn in "inverse video", which
means that the current ink colour will appear as the current paper colour and
vice versa.

Gr writing bitpattern

Ham

is short for the Hold And Modify graphics mode, which uses 4,096 colours.

[Help]

when pressed, this key displays the function key presets in !he direct mode
window.

hexadecimal

is a system of numbering using a base of sixteen instead of the usual base of
ten that we call the decimal system. In hexadecimal the letters A to F are used
as well as the numbers 0 to 9.

=HEX$

converts a number into the HEXadecimal system.

Print Hex$(number)

360

Glossary

HIDE

is used to HIDE the mouse pointer from your screen, depending on the
number of times specified by a SHOW command.

Hide

HIDE ON
ensures the mouse pointer is hidden no matter how many times SHOW is
called. \

Hide On

=HIRES

sets the current screen mode to HIgh RESolution, giving a possible screen
width of 640 pixelS instead of 320 pixels.

Screen Open 1,640,200,8,Hires

HOME
moves your text cursor HOME to the top-left-hand corner of the current
screen: in other words to coordinates 0,0.

Home

HOTSPOT
sets up a reference point HOT SPOT to be used for coordinate calculations for
an image that is stored in the current memory bank. A HOT SPOT can be set
at given coordinates or at one of nine pre-defined Positions.

Hot Spot image,x,y

Hot Spot image, position

=HREV
REVerses a Bob image by flipping it over its own Horizontal axis. Any hot
spots will also be reversed.

Bob number,x,y,image number: Rem Normal image
Rem Now flip this image number horizontally
Bob number,x,y,HREV(image number)

361

Glossary

HREVBLOCK
REVerses a numbered BLOCK of graphics by flipping it Horizontally.

Hrev Block number

=1 BOB
tells you the current Image number used by a BlitterOBject whose number you
specify in brackets. The result will be zero if the bob is not on current display.

Image=I Bob (number)

icon
is a small graphic likeness of an object, concept, technique or message,
displayed on your screen, rather like the little figure of a man or woman on
public toilet doors. It is a static Bob used to decorate the background of a
screen.

IF

is a conditional instruction, qualified by THEN.

If conditions Then statements

More advanced IF instructions can be set up that choose between alternative
actions, using AND, OR and ELSE. ENDIF is used to terminate this sort of
structured test.

If test : Goto Label : Else Gato Labe12 : Endif

iff
stands for Interchangeable File Format, commonly used to pass data between
computers. IFF pictures from Dpaint are a classic example.

INK
defines the colour to be used by drawing operations. There are two optional
parameters that you can tack on, a background colour and a border colour.

Ink colournumber,backgroundnumber,bordernumber

=INKEY$
checks to see if you have pressed a particular KEY, and returns its value in a
String.

x$=Inkey$: If x$<>"" Then Print x$

362

INPUT

loads information into one or more variables.

Input "Feed me a word"; word$

Print "Yum yum n;word$

INPUT#

Glossary

reads information from a file or a device and loads it into a set of variables.

Input# channel, variable list

=INPUT$
reads a number of characters from a file or a device.

x$~Input$(file number,character count)

INS BOB
INSerts a Blitter OBject into the memory bank.

Ins Bob bobnumber

=INSTR
searches out the occurrences of a string INside another STRing. Locations are
returned in the form of the number of characters where the search has been
successful, or a zero is returned if the string is not found.

Print Instr (Easy AMOS", "AMOS")

=INT
rounds down a floating point number to the nearest whole INTeger, so that
decimal numbers are changed into the nearest lower round number.

Print Int(-6.9)

integers
are any numbers that can be expressed as the sum or difference of units, in
other words, whole numbers like -1, 0 and 1.

363

Glossary

INVERSE OFF
INVERSE ON
controls the INVERSE mode that swaps text and background colours already
set by PEN and PAPER commands.

Inverse On

Inverse Off

i/o

is short for input/output, and refers to the ports used by the processor for
communicating with the keyboard, printers, other computers, and so on.

=JOY
reads the current status of a JOYstick. Hit is in the mouse port the number 0
should be in brackets, or 1 for the other port. This joystick status is given in the
form of a number with the following meanings: l=up, 2=down,4=left, 8=right,
16=fire button pressed. 0 indicates no movement.

Print Joy (portnumber)

k
is the abbreviation for 'kilobyte' that is inaccurately used to represent 1,024
bytes of computer memory.

KEY SPEED
changes the SPEED of KEYboard action. Lag is the time in 50ths of a second
before characters are repeated while a key is held down. Speed is the delay in
50ths of a second between each successive character.

Key Speed lag,speed

keyword
is a word which can have a simple meaningin English, but is recognised by the
computer as having a special meaning and treated as a command to do
something very precise. When a keyword is recognised in your programming,
it is automatically given a capital letter and proper spacing in your program
listing. So it is quite safe to type your instructions in lower case letters, and let
Easy AMOS sort out the capitals and spacings.

364

Glossary

KILL

erases a file from the current disc. Forever!

Kill filename$

label

is used as a place marker at the side of a line of program. Label names can
consist of any characters you want, but they must be identified by tacking on
a colon at their end. There must be no space before the colon.

labelname:

=LACED
sets the interLACE modeof your screen, in the same way that HIRES operates.

Screen Open O,320,400,64,Laced

LED OFF

LED ON

has two effects. It toggles a high fequency sound filter off and on, as well as
the power Light on the computer.

Led Off

Led On

=LEEK
reads a four-byte word stored at the even numbered address specified inside
brackets.

Print Leek (address)

=LEFT$
shows you a specified number of characters at the LEFT hand end of a String.

Print Left$ ("Easy AMOS", 4)

A$~"Hard" : Left$ (A$, 4) ~"Easy"

=LEN
reads the LENgth of a string and tells you this number in characters.

Print Len ("1234567890")

365

Glossary

=LENGTH
tells you the LENGTH of a memory bank in bytes. If it contains Bobs, then the
number of Bobs in the bank will be given instead. You have to put the number
of the bank inside a pair of brackets.

Print Length(banknumber)

LIMIT BOB
restricts the visibility of a numbered Blitter OBject to the LIMITs of a rectangle
on screen. You set up the size of this rectangle by giving its coordinates.

Bob 1,100,100,1

Limit Bob number,xl,yl To x2,y2

LIMIT MOUSE

restricts the MOUSE movements to the LIMITs of a given rectangle on screen.
You set up the size of this rectangle by giving its coordinates.

Limit Mouse xl,yl To x2,y2

LINE INPUT

INPUTs a list of variables one at a time, using the [Return] key to enter them
separately. This is instead of the comma used in INPUT commands.

Line Input "Enter three numbers"; A, B, C

Print A,B,C

LINEINPUT#

INPUTs a list of variables one at a time from the device opened to #channel,
separated by any character you want, instead of the normal comma.

Line Input #channel,separator$,variable list

line numbers

All lines in a computer program have their own physical number. Easy AMOS
provides clear messages to tell you which numbers are involved at every stage
of your programming. You can also create your own line numbers to act as
Labels.

366

Glossary

USTBANK
provides a detailed LISTing of the memory BANKs currently reserved. The
following information will be shown about each bank: its number, the type of
bank it is, its start address in hexadecimal and its length, also in hexadecimal.

List Bank

LOAD
LOADs a file of one or more memory banks. An optional destination bank
number can be given.

Load "filename" ,number

LOAD IFF
LOADs an IFF format graphic to your current screen. If you want to choose
an alternative destination screen, simply give its number after the filename.

Load Iff "filename", screen number

LOCATE
moves the text cursor to the LOCATion of whatever coordinates you choose.
Because you are moving a text cursor, set the location in charactercoordinates
and not pixel coordinates.

Locate x,y

=LOF
returns the Length of an Open File.

length=Lof(channel)

=LOGBASE
returns the address of one of the six possible bit-planes making up the current
LOGical screen. The number of the bit-plane you want to find must be inside
a pair of brackets. If the plane does not exist, a zero will be returned.

address=Logbase(planenumber)

367

Glossary

=LOGIC
tells you the identification number of the LOGICal screen.

Print Logic

LOKE
copies a four-byte number into an address.

Loke address, number

LOOP
acts as the partner to a DO command, creating a repetitive LOOP.

Do

Print "Eternity"

Loop

=LOWER$
converts all the characters in a string to LOWER case.

Print Lower$ ("Easy AMOS")

=LOWRES
sets a screen to LOW RESolution mode. The maximum width of such a screen
is 1024 pixels (0 to 1023).

Screen Open O,320,200,16,Lowres

LPRINT

sends a List of variables to a PRINTer instead of the screen.

Lprint"Print me on a printer"

machine code

is a set of instructions used by a microprocessor chip, and programs can be
written directly to it in 'assembly language'. Easy AMOS is much more
convenient.

368

Glossary

=MAX

compares expressions madeup of strings,integersor real numbers, and shows
you the one with the MAXimum value.

Print Max(variablel,variable2)

memory bank

is a section of memory dedicated to a special purpose. Easy AMOS uses 15 memory
banksforvariouspurposesinciudingBobs,icons,music,soundsamples,menus, work
and data.

menus

for computers are the same as menus for restaurants, providing a list of
options displayed on your SCreen from which you can make a choice.

=MID$

returns a string of characters from the MIDdle of a String, set by the number
of characters offset from the start, followed by the number of characters to be
fetched.

Mid$(A$,position,numbercharacterS)=B$

=MIN

compares expressions made up of strings, integers or real numbers, and
returns the one with the MINimum value.

Print Min$(variablel,variable2}

MKDIR

MaKes a new DIRectory folder.

Mkdir folder$

modem

is the abbreviation for MOdulator DEModulator, a device for sending data between
computers by squirting it down telephone lines.

=MOUSEKEY

reads the status of the MOUSE KEY buttons, and tells you the result in the form of a
bit-pattern. BitO=I meanstheleftbuttonhasbeenpressed,bitO=Omeanstheleftbutton
has not been pressed. Bit 1 uses the same system for the right mouse button.

369

Glossary

=MOUSE SCREEN

checks to see which SCREEN the MOUSE pointer is currently occupying.

screen number=Mouse Screen

=MOUSEZONE
checks to see which screen ZONE number the MOUSE pointer is currently
sitting in.

zone number=Mouse Zone

MUSIC
starts playing the piece of MUSIC whose number you call up.

Music number

MUSIC OFF
switches OFF all MUSIC.

Music Off

MUSIC STOP
STOPS the current MUSIC and starts up any other music that is still active.

Music Stop

MVOLUME
sets the Music VOLUME by giving it a number from 0 for silent up to 63 for
very loud.

Mvolume number

nesting
is the process of placing one or more program blocks inside each other, using
indentation to mark the blocks in your program listing.

NEXT

is the counting command that partners FOR, to repeat a section of program a
specific number of times.

For x=l To 100 : Print "Easy" : Next x

370

Glossary

NOISE TO
assigns white NOISE TO a voice of your choice.

Noise To voicenumber

NO MASK
removes the mask from a numbered Bli tterOBject. Without a mask, the Bob's
entire image will be displayed on screen, including any transparancies.

No Mask bobnumber

=NOT
swaps over all binary digits from 1 to 0, and vice versa. This acts as a logical
NOT, where Not(True)=False.

A~Not(%binarynumber)

=NTSC
reports back which mode Easy AMOS is running from. 0 means PAL is active
and -1 means NTSC is running.

OPEN IN
OPENs a file for INput identified via channels 1 to 10.

Open In channeinumber,filename$

OPEN OUT
OPENs a file for OUTput, identified via channels 1 to 10.

Open Out channelnumber,filename$

OPEN RANDOM
OPENs a RANDOM access file on the current disc. You must define the
records that will be used in the random access file with the FIELD command.

Open Random channelnumber,filename$

ON
is used to jump to a particular linear procedure, depending ON the occurrence
of a variable.

On variable Goto label,label ...

371

Glossary

ON ERROR
ON ERROR PROC
either can be used to detect and trap an ERROR without having to return to the
editor window.

On Error Gate label

On Error Proe name

origin
is the term used for the screen graphic coordinates 0,0

PACK
compresses and PACKs a whole screen into a numbered memory bank.
Sections of the screen can be specified by optional coordinates of the top left
hand corner and bottom right-hand corner.

Pack screennumber To banknumber,xl,yl,x2,y2

PAINT
fills an area around coordinates x,y with a colour or pattern. If a mode of ° is
selected, PAINTing stops wherever the current border colour is found. If 1 is
selected, PAINTing stops at any pixel different from the current INK colour.

Paint x,y,mode

Pal
is short for Phase Alternation Line, the common television standard in the UK
and Europe, using 625 lines.

PALETTE

sets any combination of current screen colours from the available PALETTE.
Colours are made up using hexadecimal notation, making it easier to define
the RGB of a colour.

Palette $RGB,$RGB,$RGB

PAPER

sets the colour you choose by its identity number as the background PAPER
for your text PEN.

Paper colournumber

372

Glossary

parameter

refers to a value that is always the same, used for sending data to and from
procedures. Many commands also need parameters to complete their tasks.

=PARAM

=PARAM#

=PARAM$

tells you what the resulting PARAMeter is, after the most recent procedure has
been completed.

A#=Param#

PASTE BOB

gets the image whose number you call from the B1itter OBject memory bank,
then PASTEs the Bob at the screen coordinates you set.

Paste Bob x,y,irnagenumber

=PEEK

tells you what 8-bit byte is stored at the address you request in brackets.

B=Peek (address)

PEN

sets the colour of the PEN to be used for writing text in the current screen from
one of 64 alternative colours, depending on your current screen mode.

Pen colournurnber

=PHYBASE

tells you the address of the bit-plane number you request in brackets, for the
current screen. If the plane does not exist, a value of zero will be given.

address=Phybase(planenumber)

=PHYSIC

tells you the identification number for the current PHYSICal screen.

I=Physic

373

Glossary

=PI#
returns the number PI that is used to show the ratio of the diameter of a circle
to its circumference.

Print pi

pixel

is a bad abbreviation for PIcture ELement, which is the single addressable dot
on a screen display.

PLAY
PLAYs a note or waveform with your selected pitch and delay. You can also
give an optional combination of voices.

Play voice, pitch, delay

PLOAD
reserves the memory bank whose number you call up and LOADs it with
machine code.

Pload "filename",banknumber

PLOT

draws a point in the current ink colour at your choice of coordinates. If you
want, a new colour can be specified, which will be used for this and all further
drawing operations.

Plot x,y,colour

POF
changes the reading or writing POsition of a File.

Pof(channelnumber)=position

=POINT
tells you the colour index of a POINT at the coordinates you want.

Plot 100,100

Print "The colour at 100,100 is ";Point(100,100)

374

Glossary

POKE
shoves a byte represented by a number in the range from 0 to 255 into the
add ress you select.

Poke address, number

POLYGON
draws a filled POLYGON,or many sided shape, of the current ink colour. The
shape of the polygon is set up by any number of screen coordinates.

Polygon xl,yl To x2,y2 To x3,y3 To ...

POPPROC
is used if you have to POP out of a PROCedure in a hurry.

Pop Proe

PRINT

PRINTs items on screen, made up from any groups of variables or constants
separated by semi-colons or commas. As a short-cut, the [?] character key can
be used instead of PRINT.

Print variable list

? variable list

PRINT#
PRINTs a list of variables to a file or to a device that you select by a channel
number.

Print #channel,variable list

PRIORITY OFF

PRIORITY ON

changes between Blitter OBject PRIORITY modes. Normally, Bobs barge in
front of any objects with a lower Bob number, but PRIORITY ON gives the
greatest priority to objects with the highest y coordinates on screen.

375

Glossary

PRIORITY REVERSE OFF

PRIORITY REVERSE ON

toggles the REVERSE effcctof the PRIORITY command for the display of Bobs
on screen. PRIORITY REVERSE OFF is the normal mode, but by turning it ON
Bobs with the lowest y coordinates will appear in front of those with highery
coordinates.

PROCEDURE

creates an Easy AMOS PROCEDURE, identified by a string of characters
which make up its name.

Procedure NAME

procedures
make programming easier. They are specially created stand-alone program
chunks that perform a task without affecting the main program.

program

is simply a collection of commands used to instruct the computer.

PUT

takes a record from memory and PUTs it into a selected record number of a
random access file, using your choice of channel number.

Put channelnurnber,recordnumber

PUT BLOCK

copies a numbered graphic BLOCK and PUTs it on the screen at its original
position, unless you change the position by adding new coordinates.

Put Block number,x,y

radian

In trigonometry, a radian is the angle subtended by an arc whose length is
equal to the radius of a circle. This angle is formed by two radii of a circle that
cut off an arc on the circumference that is equal in length to the radius. One
radian is equal to 57.296 degrees. The Amiga prefers to use radians instead of
degrees, but you can change that with the DEGREE command.

376

Glossary

RADIAN
makes sure that all future angles must be entered using radians if you have
previously specified DEGREEs.

Radian

=RAIN
changes the colour of a line in a RAINbow to any chosen value. The number
of the rainbow and the scan line you want to change should be inside brackets.

A=Rain(number,line)

RAINBOW
creates a numbered RAINBOW effect, with a base colour created by SET
RAINBOW. The coordinate y gives the vertical position followed by the
height in scan lines.

Rainbow number,base,y,height

RAINBOW DEL
DEletes all RAINBOWs already set up. If you add a rainbow identi tynurnber,
then only that number rainbow will be erased.

Rainbow Del number

READ
READs information from a DATA statement into a list of variables, using a special marker to locate the next item of data to be read. Variables must be the
same type as the data already held at the current position in the program, and
as usual, variables are separated by commas in the list.

Read list of variables

REM
is a little REMark statement included in your programs that helps you
REMember something. The text you use after a REM statement is ignored by
the program. The apostrophe character can also be used instead of REM.

Rem This is where I hid myoId socks data
, And this is a rem statement too

377

Glossary

RENAME

changes the name of a file.

Rename old$ To newS

REPEAT

is used to kickoff a program loop that REPEATs UNTIL a condition issatisfied.

Repeat

list of statements

Until condition

REQUEST OFF

does not allow the system to display any little screens that pop up in front of
the current screen and REQUEST you to perform some sort of action, like
inserting a disc.

Request Off

REQUEST ON

is the normal or default REQUESTer mode, where a small screen appears over
any other screen, and displays a message requesting you to do something.

Request On

RESERVE AS CHIP DATA

sets aside the required length of bytes from CHIP ram in the memory bank you
select.

Reserve As Chip Data banknumber,length

RESERVE AS CHIP WORK

allocates a WORKspace of the required length of bytes using CHIP ram in the
selected memory bank.

Reserve As Chip Work banknumber,length

378

Glossary

RESERVE AS DATA

RESERVEs a permanent bank of memory of the required length of bytes.

Reserve As Data banknumber,length

RESERVE AS WORK

RESERVEs the required length of bytes for temporary WORKspace in the
memory bank you select.

Reserve As Work banknumber,length

RESERVE ZONE
RESERVEs enough memory for the number of detection ZONEs you want,
before you define them using SET ZONE. If you leave out the number of zones,
all current zone definitions will be wiped out.

Reserve Zone number

reserved variables

perform specific programming tasks already set up within Easy AMOS, such
as TIMER and X MOUSE.

RESET ZONE
erases all screen ZONEs previously SET. By adding individual zone numbers,
only those numbered zones will be wiped out.

Reserve Zone number

RESTORE
changes the point where the next READ operation can find a DATA statement,
for labels and line numbers you have created (not the physical line numbers
of the program).

Restore label

Restore number

RESUME
goes back to the statement that caused an error, after it has been dealt with by
one of your ON ERROR routines. If you specify a line number or label after
RESUME, the program will jump to that point.

Resume linenumber

Resume label

379

Glossary

RESUME LABEL

tells the program to jump to a label after an error.

Resume Label labelname

RETURN
exits from a subrou tine and RETURNs to the next Easy AM OS instruction after
the original GOSUB. A Gosub statement can have more than one Return
command at different places in the routine.

Return

=REV

REVerses a Bob image completely, by flipping it over its own horizontal axis
and vertical axis. Any hot spots will also be reversed.

rgb

Bob number,x,y,image number: Rem Normal image

Rem Now flip this image number completely

Bob number,x,y,REV(image number)

is the abbreviation for the system of coloured dots that make up any colour on
your screen by combining Red, Green and Blue in various proportions.

=RIGHT$
displays the number of characters you ask for taken from a string, counting
from the right-hand side of that string.

Print Right$(A$,numbercharacters)

Right$(A$,numbercharacters)=B$

=RND

generates a RaNDom integer between zero and the number that you choose,
placed in brackets. If the number is zero, the previous random number will be
reported back.

x=Rnd (number)

380

Glossary

RUN
RUNs the current Easy AMOS program from direct mode. If it is followed by
a file$, it can be placed inside your program to allow programs to be chained
together.

Run file$

SAM BANK
assigns a new numbered SAMple memory BANK for use in your program.

Sam Bank number

SAM LOOP OFF
SAM LOOP ON
disables and enables the SAMple LOOP instruction to repeat all subsequent
SAMples continuously.

Sam Loop Off
Sam Loop On

SAM PLAY
PLAYs the numbered sound SAMple you select. You can also make choices
for voices and speed frequency, but you don't have to. Each voice to be played
is selected by its bit-map set to 1, and the frequency of playback speed is
requested in samples per second ranging from about 4000 for noises up to
10000 or more for speech and music.

Sam Play voice,samplenumber,frequency

SAM RAW
plays a sound SAMple from anywhere in memory. Each voice to be played is
set by a standard bit-pattern. The addressof the sample is then given, followed
by the length of the sample to be played, then its frequency of playback speed
in samples per second.

Sam Raw voice, address, length, frequency

381

Glossary

SAMPLE
goes to the sample memory bank and assigns the SAMPLE whose number you
select to the current sound wave. A range of voices is selected with the
standard bit-map format.

Sample number To voices

SAVE
SAVEs all memory banks onto disc. If an optional bank number is specified,
only that bank number will be saved.

Save "filename.abk",number

SAVE IFF
SAVEs the current graphic screen as an IFF picture onto disc. A compression
code can be used as an option for compacting the screen before it is saved. This
code is set to zero to save the screen as it is, or set to 1 to use the standard file
compression system for saving memory.

Save Iff "filename~,compressioncode

SAY
commands your Amiga to speak!

Say speech$

=SCANCODE
returns the SCANCODE of the last key-press recognised by INKEY$. As well
as character keys, this function can also check for keys like [Help] and [Tab].

s=Scancode

scancode
is the numeric identity code carried by each different keypress on your
keyboard.

SCREEN

sets up the SCREEN whose number you choose, and uses it for graphics and
text operations, whether or not that screen is currently displayed.

Screen number

382

Glossary

=SCREEN BASE
tells you the BASE address of the SCREEN table that is used to hold a list of
dimensions and statistics about your Easy AMOS screens.

table=Screen Base

SCREEN CLONE
makes an exact CLONEd copy of the current SCREEN and gives this new copy
the screen number of your choice.

Screen Clone number

SCREEN CLOSE
erases the numbered SCREEN you specify and frees up its old memory so that
it can be used again.

Screen Close number

SCREEN COpy
makes COPies of chunks of your screen. The first screen number you select
holds the source image, and the second one is the number of the destination
screen. You can also use the optional coordinates of xl,yl and x2,y2 for the
rectangular source chunk of graphics, and x3, y3 for the top left-hand coordinates
of the destination position. Finally, you can include a copying mode to be
used.

Screen Copy screenl,xl,yl,x2,y2 To screen2,x3,y3,mode

SCREEN DISPLAY
sets up the position of your graphic DISPLAY on the SCREEN number you
choose. You can use optional x,y coordinates as well as setting the width and
heigh t of the screen in pixels.

Screen Display number,x,y,width,height

SCREEN IflDE
temporarily HIDEs the current SCREEN. If you follow the instruction with a
screen number, then that screen becomes hidden.

Screen Hide screennumber

383

Glossary

SCREEN OFFSET

changes a screen's top-left position by setting a new origin with the OFFSET
coordiantes x and y. This allows oversized screens to be scrolled into view.

Screen Offset number,x,y

SCREEN OPEN

OPENs a SCREEN with a number from 0 to 7 and reserves memory for its use.
The wid th and height of the screen is set in pixels, followed by the number of
colours you want to use, then your choice of screen mode of zero for low
resolution, $8000 for high resolution and 4 for interlaced screens.

Screen Open number,width,height,colours,mode

SCREENSHOW

is used to SHOW a SCREEN that has been hidden with a previous SCREEN
HIDE instruction.

Screen Hide number

SCREEN SWAP

SWAPs the display between the current logical and physical SCREENs. You
can specify another screen number if you want.

Screen Swap number

SCREEN TO BACK

moves the current SCREEN to the display BACKground. You can specify
another screen number to be moved if you want.

Screen To Back number

SCREEN TO FRONT

moves the current SCREEN to the FRONT of the display. You can specify
another screen number to be moved if you want.

Screen To Front number

384

Glossary

SET BOB

SETs the drawing mode for drawing a Blitter OBject on screen. First select the
number of the bob you want to affect, then choose the state of the background,
followed by a bit-map of the screen planes in which the bob will exist. Finally
specify if a mask is to be used.

Set Bob number,background,screenplanes,mask

SET BUFFER

SETs the size of the BUFFER that holds your variables to a selected number of
kilobytes of memory.

Set Buffer number

SET CURS

alters the shape of the CURSor by changing the bit-patterns L1 to LB.

Set CUrs Ll,L2,L3,L4,L5,L6,L7,L8

SETDIR

controls the style of the DIRectory listing, by setting the number of characters
to be displayed from 1 to 100, followed by optional pathnames to be filtered
out of directory searches.

Set Dir number,filter$

SETENVEL

changes the volume of a sound ENVELope with the following parameters: the
number of the waveform, a phase number from 1 to 6, the duration of the
current step set in 50thsof a second and the volume at the end of the phase from
o to 63.

Set Envel wave,phase To duration, volume

SET FONT

selects the character FONT number to be used by the next TEXT command.
You should create your font list using GET FONTS, before you choose a font
setting.

Set Font number

385

Glossary

SET INPUT
SETs the characters you want to INPUT to end a line of data. Many computers
need both a [Return) and [line feed] character at the end of each line, but the
Amiga only needs a [line feed). Make your setting by choosing two ASCII
values as your end-of-line characters, or make the second value a negative
number if you only want to use a single character.

Set Input 10,-1 Rem Standard Amiga format

Set Input 13,10 : Rem ST compatible format

SET LINE
SETs the appearance of all straight LINEs to be drawn using DRAW and BOX.
A mask must be set after SET LINE in the form of a 16-bit binary number,
anywhere between 0 and 65535.

Set Line %1111000011110000

Set Line %1111111111111111

SETPAlNT

Rem Dotted line

Rem Normal line

SETs the outline mode for shapes drawn using BAR and POLYGON. A mode
value of 1 creates a border line of the last INK colour, and a value of zero turns
the outline off again.

Set Paint modenumber

SET PATTERN

SETs the PATTERN to be used for filling shapes that you draw, by choosing
a pattern number. A value of zero is the normal setting, which completely fills
shapes with the current INK colour. If the pattern number is greater than zero,
one of the Easy AMOS built-in patterns is used. If it is less than zero, a clipped
version of one of your Bobs will be adapted as your fill pattern.

Set Pattern number

SET RAINBOW
SETs up a RAINBOW for later display. You must give your new rainbow an
identity number from 0 to 3, followed by the colour you want to change using
the rainbow. Then set the size of the length of your colour index table in the
range 16 to 65500. Finally, give the red, green and blue intensities a value in
their own strings.

Set Rainbow number,colour,length,r$,g$,b$

386

Glossary

SET TALK

SETs the style of synthetic speech used with the SAY command. First choose
your sex, with a setting of 1 for female or zero for male. Then set the rhythm
mode with 1 for on or zero for off. Next you should setthepitch of speech from
a low of 65 to a high of 320. Finally, give the rate of speech in words per minute
between 40 and 400.

Set Talk sex,ffiode,pitch,rate

SET TEXT

selects the style of TEXT font from a choice of ° for underlined, 1 for bold and
2 for italic.

Set Text stylenumber

SET WAVE

defines the sound of a WAVEform. Waves ° and 1 are permanently set,so start
new wave numbers from 2 upwards, then set the shape of the waveform from
a list of 256 numbers in a shape$.

Set Wave number,shape$

SET ZONE
SETs upa rectangular screen ZONE for testing by ZONE commands. Set your
zone by giving it an identity number and then set its coordinates.

Set Zone number,xl,yl To x2,y2

=SGN
finds the SiGN of a number, giving a result of -1 for negative, ° for zero or 1 if
the number is positive.

s=Sgn(number)

s=Sgn (numbed)

SHOOT

triggers a sound like a cockroach slamming a door.
Shoot

387

Glossary

SHOW
SHOWs a previously hidden mouse pointer on the screen, whenever the
number of SHOWs becomes greater than the number of HIDEs already
programmed.

Show

SHOW ON
immediately SHOWs a hidden mouse pointer on screen, no matter how many
HIDEs have been commanded.

Show On

=SIN
calculates the SINe of an angle, resulting in a floating point number.

a~sin(angle)

sine

is the ratio of the length oftheopposite side to that of the hypotenuse, ina right
angled triangle.

SPACK

performs a Screen PACK and saves it into a memory bank. Graphics, modes
and all location details are saved in a compressed package, to be unpacked
exactly as they were. Give the screen its identity number, followed by the
number of the destination memory bank. You can also include optional
coordinates to select a part of the screen area to be packed, by including the top
right-hand x,y and the bottom left-hand x,y coordinates.

Spack screennumber To banknumber,xl,yl,x2,y2

=SQR
calculates the SQuare Root of a number, that is the number that when
multiplied by itself results in the number you have selected in brackets.

a#~Sqr (number)

stack

refers to a number of data items 'stacked' in order of usage, with a specific
purpose in a computer program.

388

Glossary

=START
gives the START address of the memory bank number you place inside a pair
of brackets. If the bank contains Bobs, then the number of Bobs is returned.

Print Start(banknumber)

STEP
controls the size of any STEPs inside a FOR .. NEXT loop. Normally steps are
counted off in units of one at a time, but you can choose any number you want
for the size of step.

For x=firstnumber To lastnumber STEP stepnumber

=STR$
converts a number into a STRing. This is handy for use with certain functions
that do not allow numbers to be used as parameters, such as CENTRE.

a$~Str$(number)

=STRINGS$
creates a new string made up of as many copies as you want of the first
character in an existing string. Just put the original string followed by the
number of characters in the new string inside a pair of brackets.

Print String$(c$,numbercharacters)

syntax error
in Easy AMOS is similar to making mistakes in the English language when the
rules grammar of speeling or:, punctuation am broken. AMOS will always
point out a syntax error and try to explain what has gone wrong and where the
problem lies.

SYSTEM
is used to quit the Easy AMOS SYSTEM if you have clicked on the quit icon,
and return to the workbench. If the Easy AMOS disc has already been booted,
then SYSTEM will quit Easy AMOS and leave you with a blank screen.

System

389

Glossary

=TAN
calculates the TANgent of an angle.

a~Tan(angle)

tangent
is the ratio of the length of the opposite side to that of the adjacent side in a
right-angled triangle. In other words, the ratio of sine to cosine.

TEMPO
changes the speed or TEMPO of a curr~nt piece of music, from 1 (lentissimo)
to 100 (presto furioso.)

Tempo speed

TEXT

prints a TEXT string at your choice of coordinates on screen.

Text x,y,t$

=TEXTBASE
tells you the position in pixels of the current BASEline for the TEXT font you
are using.

b~Text Base

=TEXT LENGTH

tells you the LENGTH of a section of a graphic TEXT character string, giving
its width in pixels.

w~Text Length(t$)

=TEXTSTYLE
tells you the current TEXT SlYLE set up by SET TEXT.

s~Text Style

390

Glossary

THEN
acts as a partner to an IF in a logical choice between alternative actions.

If condition Then statement

TIMER

is a reserved variable that counts off TIME in units of one 50th of a second.

t=Timer

TO

sets destinations or distances in certain commands.

Screen Copy 1 To 2

Set Zone l,xl,yl To x2,y2

Wave 1 To %0001

TRACK LOAD

loads a Tracker sound module into the memory bank number of your choice,
erasing any existing data in this bank number before loading the new data.
The new bank will be called "Tracker". Bank number 6 is used as a default.
Normal Easy AMOS sound commands should NOT be used while Tracker
music is being played.

Track Load "modulename",banknumber

TRACK LOOP OFF

turns off a looping Tracker module.

TRACK LOOP ON

causes the current Tracker module to loop.

TRACK PLAY

starts Tracker music playing. Give this command, followed by the appropriate
bank number. If the bank number is omitted, 6 is used as a default. A pattern
number can also be added as a starting point from which the Tracker module
is to be played.

Track Play, banknumber,patternnumber

391

Glossary

TRACK STOP
Stops any Tracker music currently being played.

TUTOR
calls up the Easy AMOS Tutor, and can be used from the Editor or in Direct
Mode.

UNPACK
decompresses or UNPACKs a compacted screen in one of three ways. It can
open a screen and restore its image from a selected memory bank, or unpack
a screen at its original position, or unpack an image and redraw it starting at
your choice of coordinates.

Unpack banknumber To screennumber

Unpack banknumber

Unpack banknumber,x,y

UNTIL
keeps a REPEAT loop going UNTIL a condi tion has been satisfied.

Repeat

list of statements

Until condition

=UPPER$

converts a string of text into nothing but UPPER case characters.

a$=Upper$ (b$)

USING

is always used after PRINT for making subtle changes to the way output is
printed from a variable list. Special characters can be used in a forrnat$, each
one having a different effect. These characters are listed at the end of the
Glossary, along with their effects.

Print Using format$ivariable list.

392

Glossary

=VAL
converts a list of decimal digits stored in a string into a number VALue.

x~Val (v$)

variables

are the names given to identify the values that result from calculations made
by computer programs. Variable names can be up to 255 characters long. they
must begin with a letter and although they cannot contain any spaces they are
allowed to contain the underscore character "_" instead. There are three types
of variables used in Easy AMOS, integers, real numbers and string variables.

=VARPTR
tells you the address of a VARiable in memory.

address~Varptr(variable)

vdu
stands for Visual Display Unit, and generally refers to any unit housing a
screen for displaying computer generated images.

VOICE
gets one or more voices ready to perform, by setting its individual bit mask to
1.

voice %1111 : Rem Activate all four voices

voices
Four voices are used to play sound. Each voice to be selected must have its
associated bit set to 1. The standard bit-map is as follows:

BitO-> voice 0

Bitl-> Voice 1

Bit2-> Voice 2

Bit3-> Voice 3

393

Glossary

VOLUME
changes the VOLUME of sounds to be played from an intensity of 0 for silent
up to 63 for very loud. You can select which voices are to be affected if you
want, by setting their individual bits to 1, otherwise they will be unaffected.

Volume voices, intensity

volume
is the name created to identify each individual disc. A volume label can be
used instead of a drive name with Easy AM OS commands, and if it is not found
a "Pleaseinsertvolume··messagewillbereported. New discs are automatically
given the name '·Empty", and you can enter a new volume name by choosing
the [Rename] option. You are strongly advised to give each of your discs a
different name to avoid confusion. Volume names must end with a colon
character like this:

MY PROGRAMS:

=VREV
REVerses a Bob image by flipping it over its own Vertical axis. Any hot spots
will also be reversed.

Bob nurnber,x,y,image number: Rem Normal image

Rem now flip this image number vertically

Bob nurnber,x,y,VREV(imagenumber)

VREVBLOCK

REVerses a numbered BLOCK of graphics by flipping it Vertically.

Vrev Block number

=VUMETER
tests the volume of a single voice number from 0 to 3, giving a result from 0 for
silence up to 63 for as loud as possible.

intensity~Vumeter(voicenumber)

394

Glossary

WAIT

pauses an Easy AMOS program and makes it WAIT for the number of SOths
of a second you specify.

Wait x

WAIT KEY

WAITs for a single KEY to be pressed before acting.

Print "Press a key" : Wait Key : Print "Thank youH

WAITVBL

stops and WAITs until the next Vertical BLank period, the 50th of a second it takes to
update a screen. This is ideal for synchronising animation and screen swaps.

Wait Vbl

WAVE

assigns the wave number you select to one or more sound channels. Set the bit
pattern of any voices to be used to 1.

Wave number To voices

WlflLE ... WEND

marksthebeginningandendofaloopusedtorepeatasectionofyourprogramWHJLE
a'condition remainstrue. Iftheconditiondoesnotresultina valueof-1 for'true", then
the loop will be stopped, and the program will go on to the next insruction. You can
include AND, OR and NOT structures in your conditions.

While condition

list of statements

Wend

x-axis, y-axis

are nominal reference lines used in trigonometry and certain graphic displays,
running through an image from side to side (the x-axis) and from topto bottom
(the y-axis).

395

Glossary

=XBOB
tells you where the X coordinate is on the current screen of the Blitter OBject
whose number you put inside brackets.

xl~X Bob(number)

x-coordinate, y-coordinate
are the pair of coordinates that locate an exact point on your screen. X is the
distance from the left-hand side of the screen, and y is the distance from the top
of the screen.

=XCURS
tells you where the X coordinate is of your text CURSor, in text format.

x=Xcurs

=XHARD

converts an X coordinate relative to the current screen into a HARDware
coordinate. If an optional screen number is given, then all coordinates will be
relative to that screen.

x=Xhard(screen number,xcoordinate)

X MOUSE
tells you the hardware X coordinate of the MOUSE pointer. If you give
XMOUSE a value then this function can also be used to move the mouse to a
specific screen position.

Xl~X Mouse
Mouse=Xl

=XSCREEN

converts a hardware X coordinate into a current SCREEN coordinate. If you
include an optional screen number inside the coordinate brackets then the
coordinate will be relative to that numbered screen.

x=X Screen(screennumber,xcoordinate)

396

Glossary

=XTEXT

converts an X coordinate from graphic format into a TEXT format coordinate,
relative to the current screen. If the screen coordinate is outside of this screen
then a nega ti ve result will be gi ven.

t=x Text (xcoordinate)

=YBOB

tells you where the Y coordinate is on the current screen of the Bob whose
number you put inside brackets.

yl~Y Bob (number)

=YCURS

tells you where the Y coordinate is of your text CURSor, in text format.

y=Ycurs

=YHARD

converts a Y coordinate relative to the current screen into a HARDware
coordinate. If an optional screen number is given, then all coordinates will be
relative to that screen.

y=Yhard(screennumber,ycoordinate)

YMOUSE

tells you the hardware Y coordinate of the MOUSE pointer. If you give
YMOUSE a value, then this function can also be used to move the mouse to a
specific screen position.

Yl~Y Mouse

Y Mouse=Yl

=YSCREEN

converts a hardware Y coordinate into a current SCREEN coordinate. If you
include an optional screen number inside the coordinate brackets then the
coordinate will be relative to that numbered screen.

y=Y Screen(screennumber,ycoordinate)

397

Glossary

=YTEXT
converts a Y coordinate from graphic format into a TEXT format coordinate,
relative to the current screen. If the screen coordinate is outside of this screen
then a negative result will be given.

t=y Text (ycoordinate)

=ZONE
tells you the number of the current screen ZONE at the graphic coordinates
that you specify inside brackets. You can include an optional screen number
if you wish.

n=Zone(screennumber,x,y)

ZOOM
magnifies or reduces a section of the screen by ZOOMing in or out. You must
specify the number of the source screen from which the picture is to be taken,
followed by the coordinates for the top left and bottom right-hand corners of
the original picture area. Then say what screen number is to be used as the
destination of the new image, followed by the coordinates for the new size of
the picture.

Zoom sQurce,xl,yl,x2,y2 To destination,x3,y3,x4,y4

398

Glossary

SYMBOLIC CHARACTERS:
The following symbols have specific meanings when used within an Easy
AMOS Basic program, which may be different from their meanings in
conventional English or mathematical notations.

+
the plus character [Shift]+[;] is used as in standard mathematical notation.

Print 2+2

With PRINT USING, it adds a plus sign to a positive number or a minus sign
if the number is negative.

Print Using "+##"; 10

the minus character is used as in standard mathematical notation.
Print 2-1

With PRINT USING, it gives a minus sign to negative numbers only.
Print Using "-##"; -10

*
the asterisk or star character [Shift]+[8] is used instead of the "multiply by"
symbol in standard mathematical notation.

Print 2*2

Inside quotation marks, this character can be used as a "wild card", meaning
"I am sitting here waiting to be replaced by another character."

A$="**** AMOS"

In a directory search, this character is used to mean "I am waiting to match up
with any list of filename letters up to the next control character.'

Dir "A*. *" : Rem List all files starting with A

399

Glossary

/
the forward-slash character is used instead of the "divided by" symbol in
standard mathematical notation. It is also used to divide pathnames.

Print 4/2

Easy_AMOS: folder/filename

the equals character is used as in standard mathematical notation.

If A=B Print "A is equal to B"

<>
means "greater than or less than but not equal to" as in standard mathematical
notation.

If A<>S Print "A is not equal to S"

>
the "greater than" symbol is used as in standard mathematical notation.

If A>S Print "A is bigger than S"

<
the "less than" symbol is u~d as in standard mathematical notation.

If A<B Print uA is \ smaller than B~

>=
the "greater than or equal to" symbol is used as in standard mathematical
notation.

If A>~S Print "A is bigger or equal to S"

<=
the "less than or equal to" symbol is used as in standard mathematical notation.

If A<~S Print "A is smaller or equal to S"

400

Glossary

1\

the circumflex or exponential character [Shift] +[6] is used to mean "raise to the
power of".

Print 5'5

With PRINT USING it causes a number to be printed out in exponential form.

Print Using "This is an exponential number""; 123.45

%
theper-centum character [Shift]+[5] precedes numbers given in binary nota tion.

%11111111

the hash or number character follows a real number variable.

PIt

With PRINT USING it specifies one digit at a time to be printed out from a
given variable, with any unused digits being replaced by spaces.

Print Using "#H"; 123456

()

the round brackets characters [Shift]+[9] and [Shift]+IO] act as conventional
brackets in numerical expressions.

Print (2+2)*3

the underscore character [Shift]+[-] is used instead of spaces in a file name.

Load "File narne~

,
the apostrophe character can be used instead of REM.

'You must remember this a kiss is just a kiss

401

Glossary

II

double quotation marks are used to enclose strings.

• •

A$="This is a string of characters ft

the colon character [Shift]+[;] is used to separate commands in a line of
program.

Boom : Wait 100 : Print "Pardon me"

The colon is also used to define a label name, and must come immediately after
that name.

LABEL:

It must also be added to the name of a disc to be examined, in order to stop that
name being misinterpreted as a file name.

Dir "FONTS:"

,
the comma character is used as a separator for items such as parameters and
lists of data variables.

Screen Open O,320,200,16,Lowres

Data 1,2,3, HAmOSU

Listed elements that are separated by commas will have their data printed at
the next TAB position on the screen.

,
the semi-colon character is also used as a separator for lists of items consisting
of variables or constants, but the semi-colon will cause data to be printed
immediately after the previous value.

Print A,BiCS

With PRINT USING,a semi-colon will cause a number to be centred, butitwiII
not output a decimal point.

Print Using "PI is *; *H";pi*

402

Glossary

The full stop character can be used as a decimal point.

3.333

It is also used to mark an extension of a filename.

"Picture. IFF"

With PRINT USING, it places a decimal point and centres it on screen.

Print Using "PI is #.###";PH

$
the dollar symbol [Shift]+[4] is used to indicate a "siring".

a$

It is also used to precede notation given in the hexadecimal system.

$FF

?
the question mark character can be used instead of PRINT.

? "The end. Thank you and goodnight."

Overleaf you will find a list of control keys followed by menus
available from the Editor.

403

Glossary

DIRECT MODE EDITOR KEYS

This is a list of the editing keys and their effects when in Direct Mode.

[Backspace]

[Del]

[Shift]+[Backspace]

[Shift]+[Del]

[Return]

[Left]

[Right]

[Shift]+[Left]

[Shift]+[Right]

[Help]

[FI]

[F2]to [FlO]

[Esc]

404

Delete character to the left of cursor.

Delete character at cursor current location.

Delete entire current line.

Delete entire current line.

Execute current line of commands.

Move cursor one space left.

Move cursor one space right.

Move cursor to previous word.

Move cursor to next word.

Redisplay function key definitions.

Redisplay last line entered.

Redisplay second-to-last line entered, third-to
last, etc. up to tenth-to-last line entered. The lines
are cleared from memory when Direct Mode is
left and Main Editing Window is returned to.

Leave Direct Mode. Go to MAIN EDITING
WINDOW.

Glossary

THE EDITOR CONTROL KEYS

This is a list of all the Easy AMOS control keys available when in the Main
Editor, and their effects.

HELP INFORMATION

[Help]Open Help Window, gain access to Easy AMOS help file
information.

CURSOR KEYS

[Left] Move cursor one space left.

[Right] Move cursor one space right.

[Up] Move cursor up to next available line.

[Down] Move cursor down to next available line.

[Shift]+[Left] Move cursor to previous word.

[Shift]+[Right] Move cursor to next word.

[Shift]+[Up] Move cursor to top line of current page.

[Shift]+[Down] Move cursor to bottom line of current page.

[Ctrl+[Up] Display previous page.

[Ctrl+[Down] Display next page.

[Shift]+[Ctr]+[Up] Jump to start of program.

[Shift]+[Ctr]+[Down] Jump to end of program.

[Amiga]+[Left] Scroll program left.

[Amiga]+[Right] Scroll program right.

[Amiga]+[Up] Scroll program up.

[Amiga]+[Down] Scroll program down.

405

Glossary

EDITING KEYS
[Backspace]

[Del]

[Return]

[Ctrl]+[I]

[Ctrl]+[U]

[Ctrl]+[Q]

[Ctrl]+[Y]

[Esc]

CUT AND PASTE

[Ctrl]+[B]

[Ctrl]+[E]

[Ctrl]+[C]

[Ctrl]+[S]

[Ctrl]+[M]

[Ctrl]+[P]

[Ctrl]+[H]

MARKER KEYS

Delete character to the left of cursor.

Delete character at cursor current location.

Enter current line/Split existing line.

Insert a line at current position.

Undo/Return last line.

Erase characters in current line from current
cursor position.

Delete current line and leave no gap.

Go to direct Mode.

Set beginning of a block.

Set end of a block.

Cut block. Erase from screen and load into
memory.

Save block in memory and leave block on screen.

Move block.

Paste block at current cursor position.

Deselect block, remove highlighting.

[Shift]+[Ctrl]+[number] Set a marker at current cursor position, with
number between 0 and 9 from numeric keypad.

[Ctrl]+[number]

406

Jump to previously set marker numbered 0 to 9
from numeric keypad.

Glossary

SEARCH AND REPLACE

[AIt]+[Up]

[AIt]+[Down]

[Ctrl]+[F]

[Ctrl]+[N]

[Ctrl]+[R]

TABULATION KEYS

[Ctrl]+[Tab arrows]

[Tab arrows]

[Shift]+[Tab arrows]

Search back through program to last label or
procedure definition.

Search forward through program to next label or
procedure definition.

Find first occurrence after current cursor position
of selected text.

Find next occurrence of selected text.

Replace selected text with replacement text and
jump to next occurrence of selected text.

Set Tab stop.

Move whole line at current cursor position to
next tab stop.

Move whole line at current cursor poSition to last
Tab stop.

PROGRAM CONTROL KEYS

[Amiga]+[S]

[Shift]+[Amiga]+[S]

[Amiga]+[L]

Save program under new name.

Save program under existing name.

Load program

407

Glossary

MAIN MENU OPTIONS
This is a list of all the options available from the Easy AMOS Main Menu
windows. They can be selected either using the mouse pointer, or by
pressing the keys listed alongside the option name.

DEFAULT MENU

Run [Fl]
Run current program from memory.

Test [F2]
Check entire program for errors. Place edit cursor at first error, if test fails.

Indent [F3]
Automatically indent listings of current program. Closed procedures are
not affected.

Blocks Menu [F4] or [Ctrl]
Display Blocks Menu. Menu options are listed below in this Glossary.
Select option via mouse or Function Key. Return to Default Menu by
clicking right mouse button, moving pointer out of menu area or pressing a
key.

Search Menu [FS] or [AIt]
Display Search Menu. Menu options are listed below in this Glossary.

Tutor [F6]
Remove default Menu screen and display Tutor Main Screen.

Help [F7]
Open Help Window, gain access to Easy AMOS help file information.

Overwrite [F8]
Toggle between Insert and Overwrite editing modes. Current mode is
displayed in Information Line as I (for Insert) or 0 (for Overwrite).

FoldlUnfold [F9]
Takes a procedure definition and folds it out of sight in program listing,
leaving only first line of procedure displayed. Unfold by placing cursor
over remaining line and select Fold/Unfold.

Line insert [flO] or [Ctrl]+[l]

Insert line at current cursor position.

408

Glossary

SYSTEMS MENU
This menu is called up with the right mouse button, or with the [Shift] key,

Load [Shift]+[Fl] or [Amiga]+[L]
Loads an Easy AMOS file from disc, via file selector,

Save [Shift]+[F2] or [Shift]+[Amiga]+[S]
Save current program with current name, If file name already exists on
current disc, it is automatically renamed with ",BAK" extension as a fail
safe,

Save As [Shift]+[F3] or [Amiga]+[S]

Save current program with new name,

Merge [Shift]+[F4]
Retain current program and place selected program at current cursor
position,

Merge Ascii [Shift]+[FS]
Retain current program and merge with Easy AMOS Ascii file,

Environment [Shift]+[F6]
Select new Edit Scrc'en environment colours with left mouse button,

Bob Editor [Shift]+[F7]
Load Bob Edi tor from disc,

Easy Disc [Shift]+[FS]
Load Disc Editor,

New [Shift]+[F9]
Erase current program, with option to save to disc before erasing,

Quit [Shift]+[FIO]
Quit Easy AMOS and return control to eLI or Workbench, with option to
save to disc before qUitting,

409

Glossary

BLOCKS MENU

This menu is called up from the Default Menu. As with other options,
direct accesses via keyboard are also given.

Block Start [Ctrl)+[B) or [Ctrl)+[Fl)
Set start position of current block.

Block Cut [Ctrl)+[C) or [Ctrl)+[F2j
Cut out selected block, remove from current position and load into
memory.

Block Move [Ctrl)+[M] or [Ctrl]+[F3]
Move highlighted block from original position to current cursor position.

Block Hide [Ctrl)+[H) or [Ctrl]+[F4)
Deselect block and remove highlighting.

Save Ascii [Ctrl)+[F5)
Save selected block to disc in Ascii text file format, for communication with
other systems.

Block End [Ctrl)+[E] or [Ctrl]+[F6)
Set end position of current block. Block between Start and End position is
now highlighted by inverse text display.

Block Paste [Ctrl)+[P) or [Ctrl)+[F7]
Paste block already Saved or Stored at current cursor position.

Block Store [Ctrl)+[S) or [Ctrl)+[F8)
Copy and save current block into memory, leaving block on screen.

Block Save [Ctrl)+[F9]
Save current block as an Easy AMOS program onto disc. Memory banks
used in current program will NOT be saved with the listing.

Block Print [Ctrl)+[FlO)
Output selected block to compatible printer.

[Ctrl)+[A)
This is a special "Select All" command, that is only accessible from the keyboard. It
selects the whole of the current program as a block, and is a short-cut enabling the
print out of a whole program or saving the program in Ascii format.

410

Glossary

SEARCH MENU

This menu is called from the Default Menu. As with other options direct
accesses via keyboard are also given.

Find [Ctrl]+[F] or [Alt]+[Fl]
Search forwards from current cursor pOSition for exact match of up to 32
characters, entered via keyboard.

Find Next [Ctrl]+[N] or [Altl+[F2]
Search forwards for next occurrence of characters specified by "Find".

Find Top [AIt]+[F3]
Search from top of current program for exact match of up to 32 characters,
entered via keyboard.

Replace [Ctrl]+[R] or [Alt]+[F4]
Before a "Find" command, type replacement new text into the Information
Line. After a "Find" command, replace selected old text with replacement
new text and jump to next occurrence of selected old text.

Replace All [AIt]+[F5]
Replace all OCCurrences of selected text with replacement text, starting from
the top of current program. Operation as follows: confirm command by
selecting [Yes] option or pressing [Y] key. Enter characters to be searched
for and changed. Enter new characters to replace original characters.

Low= Up [AItl+[F6]
Easy AMOS must treat lower case and upper case characters of the same
letters as identical, during search and replace operations. (a=A).

Low<>Up
Easy AMOS must treat lower case and upper case characters of the same
letters as different, during search and replace operations. (a<>A).

Open All [AIt]+[F7]
Open all folded procedures in current program.

Close All [AIt)+[FB)
Close all procedure definitions in current program, if no syntax errors.

411

Glossary

Set Text B [Alt]+[F9]
Set Text Buffer: change number of characters available to hold listings.

Set Tab [Ctrl]+[Tab] or [Alt]+[FlO]
Set tabulation position. Cursor jumps to appropriate position when [Tab)
key is pressed during editing.

412

INDEX

"The words
of Amos!
Proclaim
freewill
and publish. "

(Old Testament,
Amos 4.5)

413

INDEX
Use the Easy AMOS Index to find the page numbers where each entry occurs.

Easy AMOS keywords are shown in capital letters, like this:
ABS

Certain words are shown as they appear on your screen, with a capital letter
and punctuation mark, for example:
Chip: '

All other words and phrases are shown in lower case letters like this:
absolu te values

Where a word or a phrase relates to several other topics, the rclated topics are
indented below it, as follows:

binary
conversion
memory blocks
numbers

ABS
absolute values
abk
addition
address
Amos
Amos music
animation
apostrophe symbol 0
APPEAR
APPEND
AREG
arrays
arithmethic
arithmetical symbols
AS
ASC
ascii codes

414

233,341
233

301,341
230

295,304,305,341
2

212
145,182
41,401

189,341
256,341
307,341

53
230

230,399
299,342
81,342

80,98,342

assembly language 306
asterisk (*) 230,394
AT 87,342
audio envelopes 226
AUTOBACK 184,342

back-up copies 11,290
BAR 115,342
basic 342
BELL 204,342
binary 343

conversion 303
memory blocks 304
numbers 106

BIN$ 303,343
bit 295,345
bit-maps 343
blitter 128,343

INDEX
blitter objects (bobs) 128 BREAKOFF 99,345
BLOAD 304,343 BREAK ON 99,345
blocks 44 BSAVE 304,345

cutting 45 buffer 297,345
flipping 197 bugs 310,346
graphic 195 byte 295,346
pasting 44 C: 33 screen 195 CALL 306,346 blocks menu 33,44,410 caps lock 346 BOB 153,343 care of discs 3 BOB CLEAR 163,344 CENTRE 86,346 BOB COL 159,344 centred text 86 BOB DRAW 163,344 CHANGE MOUSE 268,346 BOB OFF 157,344 channels 208

bobs 128,343 character set 80,346
animation 145 checking for files 277
bank operations 137 Chip: 33,296
collisions 159 CHlPFREE 297,346
coordinates 155 CHR$ 81,347
disc operations 135 CIRCLE 109,347
double buffered 155 clearing screens 85
drawing 153,163 eli 13,347
editing 129 CLIP 110,347
flipping 158 CLOSE 256,347
grabbing 139 CLOSE EDITOR 298,347
handling 156 CLS 64,85,347
hot spot 141,160 COL 160,348
image number 154 colons (:) 40,60,402
limits 155 COLOUR 113,348
loading bob editor 129,131 COLOUR BACK 113,348
masks 165 colours 110
modes 163 background 113
numbers 154 components 111
palette 142,165 flashing 120
priority 161 index numbers 112
screen resolutions 144 mixing 111
updating 162 points 105

BOB UPDATE 162,344 palette 114
BOB UPDATE OFF 162,344 setting 113
bold 90 command 40,348
BOOM 204,345 commas C) 96,402
boot 345 COMMAND LINE$ 281,348
BOX 108,345 compacting 197,198
brackets 231,401 condition 348

415

INDEX
conditional jumps 71 debug 350
conditional loops 67 decimal conversion 234
constants 318 DEEK 305,350
control codes 348 DEFFN 350
control key 11 DEFAULT 171,350
converting default menu 33,42,408

ascii codes 81 default screen 169,171
binary numbers 303 DEGREE 236,350
coordinates 125 degrees 236,351
hexadecimals 303 DEL BLOCK 196,351

coordinates DEL BOB 157,351
bobs 155 DEL WAVE 225,351
bob hot-spot 161 delete key 16
conversion 125,178 deleting characters 16,27
graphic 85,104 deleting files 287
hardware 178 deleting programs 27
mouse 269 destination screen 185
text 125 Df(): 4,272,351 x-y 84 DFREE 298,351 COPY 349 DhO: 272,351 copying DIM 53,351 discs 290 DIR 31,273,352 files 286 DIRFIRSf$ 278,352 memory 349 DIRNEXT$ 278,352 screens 185 DIR/W 273,352 COS 237,349 DIRECT 36,352 cosine 237,349 direct mode 34,404 crash 349 directories 31 CURS OFF 88,349 changing 291 CURS ON 88,349 display 31,273,276 cursor 349 listing 31,276 graphics 109 making 280 mouse 268 searching 273 on/off 88 setting 276 text 87 DlR$ 291,352 cursor keys 16,349,405

discs 3 cut and paste 350,406
copying 290

DATA 252,350 editor 283
data formatting 289

inputting 252 volumes 272
reading ;1.52 write-enable 5
restoring 253 write-protect 9

data base 260 disc drives 4,12,272,353
data statements 252 disc editor 283

416

INDEX
DISPLAY HEIGHT 353 EXIST 277,355
division (/) 230,400 EXIT 66
DO 66,353 exponential symbol (A) 230,401
DOKE 305,353 expressions 231
dollar symbol ($) 48,112,403 extra half bright (EHB) 200,355
dos 353

FADE 190,355 DOUBLE BUFFER 115,353
DRAW 105,353 Fast: 33,296

DRAW TO 105,353 FAST FREE 297,356

drawing FIELD 258,356

lines 105 field data 261

shapes 108 fields 257

solid shapes 114 file selector 26,30

DREG 307,354 files 30,272,356

drive light 3,5 checking 277

drives 4 copying 286

DfO: 4,272,351 deleting 287

DhO: 12,272,351 end 354

floppy 4,272 erasing 280

hard 12,272 examining 30,288

naming 272 first 278
length 367

EDIT 35,354 listing 273
Edit: 33 naming 279
edit screen 15,22,32 next 278
editing keys 406 opening 255
editing window 34,298 paths 273
ELLIPSE 109,354 position 374
ELSE 63,354 random access 257
END 35,354 renaming 280,287
END IF 63,354 selection 279,285
ENDPROC 72,354 sequential 254
envelopes 226 sizing 288
EOF 354 FILL 356
equals (=) 54,64,400 fill styles l18
ERASE 300,355 filled shapes l14
erasing filtering sound 227

bobs 163 FIRE 267,356
files 280 FIX 234,356
memory banks 300,355 FLASH 90,120,357

ERRN 314,355 FLASH OFF 90,357
error handling 313 floating point numbers 234
error messages 315 floppy disc driv 4,272,351
error trapping 311 FN 357
escape key 9 folders 30

417

INDEX

fonts 80,357 HIDE 268,361
creating 93 HIDE ON 268,361
selecting 92 HIRES 170,361
using 93 hi-scores 249

FONT$ 92,357 hold and modify 200,360
FOR 68,357 HOME 86,361
formatting discs 9,10,289 HOTSPOT 161,361
FREE 297,357 HREV 159,361
free memory 297 HREVBLOCK 197,361
FsEL$ 279,358 I 33
full stops (.) 403 I BOB 158,362
functions 54,358 icons 362
function keys 28,35,358 IF 62,63,362
garbage collection 297,358 iff 139,171.172,362
GET 259,358 indenting listings 77
GET BLOCK 195,358 information line 33
GET BOB 156,359 INK 110,117,362
GET BOB PALETTE 165,359 INKEY$ 97,362
GET FONTS 92,359 INPUT 52,363
GET PALETTE 188,359 INPUT# 257,363
GLOBAL 73,359 INI'UT$ 57,363
global variables 73 inputting data 252
GOSUB 69,72,359 INS BOB 158,363

Goro 61,360 installing Easy AMOS 4
a label 61,71 on floppy drive 4

a line number 61 on hard drive 11
a variable 61 INSTR 55,363

graphic blocks 195 INT 234,363

graphic coordinates 85,104 integer variables 51

graphic cursor 109 integers 234,363
greater than (» 64,400 INVERSE OFF 83,364

GRLOCATE 109,360
INVERSE ON 83,364

GRWRITING 119,360 i/o 364
italics 90

ham mode 200,360
hard disc drive 12,272,351 JOY 266,364

hardware coordinates 178
joystick 266

hash symbol (#) 51,236,401 jumps 61,69,71

help 38,310 k 295,364
help key 38,360 keyboard
help window 38 check for keypress 97
hexadecimals 111,360 nationality 6
hexadecimal conversion 111,303 scancodes 98
HEX$ 303,360 short-cuts 27,101,404

418

INDEX
keyboard loops

speed 82 numbered loops 68
KEY SPEED 82,364 LOWER$ 84,368
keywords 23,364 LOWRES 170,368
KILL 280,365 LPRINT 271,368

L: 33 machine code 302,368
labels 60,365 calling 306
LACED 365 loading 306
LED OFF 227,365 marker keys 406
LED ON 227,365 masks
LEEK 305,365 block masks 195
LEFT$ 56,365 bob masks 165
LEN 54,365 voice masks 209
LENGTH 302,366 mathematics 230
less than «) 64,400 MAX 232,369
LIMIT BOB 155,366 memory 294
LIMIT MOUSE 271,366 alerts 296
line allocation 296

drawing 105 chip 297
numbers 366 fast 297
styles 106 free 297

LINE INPUT 257,366 saving 298
LINEINPUT# 257,366 memory banks 298,369
LIST BANK 300,367 erasing 300
LOAD 301,367 finding 302
LOAD IFF 171,367 listing 300
loading loading 301

iff screens 171,367 permanent 298
programs 29 reserving 299

loading Easy AMOS 13 saving 301
from eli 13 temporary 298
from programs disc 13 menus 42,369
from workbench 13 MID$ 56,369

local 73 MIN 232,369
LOCATE 86,367 minus (-) 230,394
LOF 367 MKDIR 280,369
LOG BASE 183,367 modem 369
LOGIC 183,368 modes
logic 64 ehb 200
logical screen 184 ham 200
LOKE 305,368 hires 170
LOOP 66,368 lowres 170
loops 66 mouse 267

conditional loops 67 mouse buttons 29,270

419

INDEX

mouse cursor PAPER 83,372
changing shape 268 PARAM 74,373
hiding 268 PARAM# 74,373
limits 271 PARAM$ 74,373
showing 269 parameters 373
zones 194 PARENT 30,285

MOUSE KEY 270,369 PASTE BOB 156,373
MOUSE SCREEN 370 path name 274
MOUSE ZONE 194,370 paths 273
multiplication symbol {*} 230 PEEK 304,373
MUSIC 212,370 PEN 83,373
MUSIC OFF 213,370 per centum symbol (%) 106,401
MUSIC STOP 213,370 peripherals 266
musical note values 208 PHYBASE 183,373
musical pitch 207 PHYSIC 183,373
MVOLUME 213,370 physical screen 182
nesting 77,370 PI# 236,374

NEXT 68,370 pitch values 208
NOISE TO 225,371 pixel 88,374
NO MASK 165,371 PLAY 210,374
NOT 371 PLOAD 306,374
ntsc 146,371 PLOT 104,374
numbers plus (+) 230,394

accuracy 234 POF 374
binary 106,303,343 POINT 105,374
decimals 234 POKE 304,375
floating point 234 POLYGON 115,375
hexadecimals 111,303,360 POPPROC 75,375
integers 234,363 PRINT 24,96,375
random 238 PRINT# 256,375

numbered lines 70 printers 271

0 33
printing on paper 271,392
printing on SCreen 24,96,375,392 OPEN IN 256,371 PRINT USING 392 OPEN OUT 255,371 PRIORITY OFF 162,375 OPEN RANDOM 258,371 PRIORITY ON 162,375 ON 71,75,371 PRIORITY REVERSE OFF 162,376 ON ERROR 311,372 PRIORITY REVERSE ON 162,376 ON ERROR PROC 313,372 PROCEDURE 72,376 origin 372
procedures 72,376

PACK 198,372 data 76
PAINT 114,372 leaving 75
pal 146,372 parameters 74
PALETTE 114,372 returning values 74

420

INDEX
program control keys 407 RND 238,380
program interrupt 99 rom 92,294
punctuation symbols 399 RUN 280,381
PUT 258,376 running programs 280
PUT BLOCK 196,376

$ 48,112,403
quitting Easy AMOS 409 SAM BANK 217,381
question mark (?) 96,403 SAM LOOP OFF 218,381
quotation marks (U) 48,402 SAM LOOP ON 218,381

SAM PLAY 215,381 RADIAN 236,377 SAM RAW 218,381 radians 236,377 SAMPLE 225,382 radius of circles 109 sample bank maker 219 radii of ellipses 109 sample banks 217
RAIN 123,377 sampled ·sound 214
RAINBOW 123,377 SAVE 301,382
RAINBOW DEL 123,377 SAVE IFF 172,382
ram 264,294 saving programs 26
random access files 257 SAY 205,382
random numbers 238 SCANCODE 98,382
READ 252,377 SCREEN 174,175,382
real number variables 51 screens
records 257 blocks 195
registration number 7 dearing 85
registers 307 cloning 187
REM 41,377 closing 171
RENAME 280,378 colours 188
REPEAT 68,378 compacting 197,198
REQUEST OFF 378 coordinates 178
REQUEST ON 378 copying 185
RESERVE AS CHIP DATA 300,378 default 169,171
RESERVE AS CHIP WORK 300,378 defining 169
RESERVE AS DATA 299,379 destination 185
RESERVE AS WORK 299,379 double buffered 155,353
RESERVE ZONE 193,379 effects 186,189
reserved variables 379 extra-large screens 177
RESET ZONE 194,379 fading 189
RESTORE 253,379 flickering 155
RESUME 312,379 height 176
RESUME LABEL 380 hiding 173
RETURN 69,380 iff 171
return key 15 logical 182
REV 159,380 modes 199
rgb 111,380 moving 175
RIGHT$ 56,380 multiple 176

421

INDEX
screens SET FONT 92,385

numbers 169 SET INPUT 257,386
offsets 177 SET LINE 106,386
opening 169 SET PAINT 117,386
packing 197 SET PATTERN 118,386
physical 182 SET RAINBOW 12L386
priority 173 SET TALK 206,387
resolution 169 SET TEXT 90,387
saving 172 SET WAVE 223,387
showing 173 SET ZONE 193,387
source 185 SGN 233,387
swapping 185 shift key 15,29
switching 182 SHOOT 204,387
synchronising 183 SHOW 269,388
width 176 SHOW ON 269,388
zones 192 signs 233
zooming 192 SIN 237,388

SCREEN BASE 383 sine 237,388
SCREEN CLONE 187,383 sorting files 31
SCREEN CLOSE 171,383 sound 204
SCREEN COpy 185,383 channels 208
SCREEN DISPLAY 175,383 effects 204
SCREEN HIDE 173,383 envelopes 226
SCREEN OFFSET 177,384 filter 227
SCREEN OPEN 169,384 sample banks 217
SCREENSHOW 173,384 samples 214
SCREEN SWAP 183,384 speech 205
SCREEN TO BACK 174,384 voices 209
SCREEN TO FRONT 173,384 volume 209
scrolling waveforms 223

screens 175 Sound tracker modules 211
text 94 source screen 185
through files 30 space bar 25
through listings 34 SPACK 197,388

search menu 33,42,411 speech 205
searching and replacing 407 square roots 234
selecting files 26 SQR 234,388
semi-colons (;) 52,96,402 stack 388
sequential files 254 START 302,389
SET BOB 163,385 STEP 69,389
SET BUFFER 297,385 steps 69
SET CURS 89,385 stereo 210
SETDIR 276,385 string find 55
SETENVEL 226,285 string replace 44

422

INDEX
string variables 52 underlining 90
strings 43,48 underscore symbol U 60,401
STRING$ 57,389 UNPACK 199,392
STR$ 58,389 UNTIL 68,392
structured tests 63 UPPERS 84,392
subroutines 69 USING 392
subtraction 230 VAL 58,393
syntax error 389 values 232
synthetic speech 205 variables 49,393
SYSTEM 389 address 305
system menu 409 arrays 53
tab setting 97,407 global 73
TAN 237,390 integers 51
tangent 237,390 loading 52
TEMPO 213,390 local 73
TEXT 126,390 naming 50
Text: 33,296 real numbers 51
text 80 string 52

centre 86 VARPTR 305,393
colours 82 vdu 393
coordinates 84 vertical blank period 183
cursor 88,96 VOICE 209,393
fonts 91 voices 209,393
graphic text 91,119 VOLUME 209,394
styles 90 volume names 272,394

TEXT BASE 126,390 VREV 159,394
TEXT LENGTH 125,390 VREVBLOCK 197,394
TEXT STYLES 91,390 VUMETER 214,394
THEN 62,391 WAIT 24,395
TIMER 391 WAIT KEY 40,395
title sequences 249 WAITVBL 184,395
TO 69,105,391 WAVE 224,395
TRACK LOAD 211,391 waveforms 223
TRACK LOOP OFF 212,391 assigning 224
TRACK LOOP ON 212,391 deleting 25
TRACK PLAY 211,391 WEND 67,395
TRACK STOP 212,392 WHILE 67,395
tracker modules 211 white noise 205
trigonometry 235 write-enable 5
typing speed 82 write-protect 9
typing tutor 100
tutor 328 x-axis 159
TUTOR 329,392 X BOIl 155,396

423

INDEX
x-coordinates 84,3% YMOUsE 269,396
XCURs 87,396 ysCREEN 178,397

X HARD 178,396 YTEXT 125,398

X MOUSE 269,396 ZONE 193,398
X SCREEN 178,396 ZONES 194
X TEXT 125,397 zones

mouse 194
y-axis 159 reserving 193
YBOB 155,397 resetting 194
y-coordinates 84,396 screen 192
YCURs 87,397 setting 193
YHARD 178,397 ZOOM 192,398

424

